Multimodal Maps: An Agent-Based Approach

Adam Cheyer and Luc Julia

SRI International
333 Ravenswood Ave
Menlo Park, CA 94025 - USA

Abstract. In this paper, we discuss how multiple input modalities may
be combined to produce more natural user interfaces. To illustrate this
technique, we present a prototype map-based application for a travel
planning domain. The application is distinguished by a synergistic com-
bination of handwriting, gesture and speech modalities; access to exist-
ing data sources including the World Wide Web; and a mobile handheld
interface. To implement the described application, a hierarchical dis-
tributed network of heterogeneous software agents was augmented by
appropriate functionality for developing synergistic multimodal applica-
tions.

1 Introduction

As computer systems become more powerful and complex, efforts to make com-
puter interfaces more simple and natural become increasingly important. Nat-
ural interfaces should be designed to facilitate communication in ways people
are already accustomed to using. Such interfaces allow users to concentrate on
the tasks they are trying to accomplish, not worry about what they must do to
control the interface.

In this paper, we begin by discussing what input modalities humans are
comfortable using when interacting with computers, and how these modalities
should best be combined in order to produce natural interfaces. In Sect. 3, we
present a prototype map-based application for the travel planning domain which
uses a synergistic combination of several input modalities. Section 4 describes
the agent-based approach we used to implement the application and the work on
which it is based. In Sect. 5, we summarize our conclusions and future directions.

2 Natural Input

2.1 Input Modalities

Direct manipulation interface technologies are currently the most widely used
techniques for creating user interfaces. Through the use of menus and a graphical
user interface, users are presented with sets of discrete actions and the objects
on which to perform them. Pointing devices such as a mouse facilitate selection

112 Adam Cheyer and Luc Julia

of an object or action, and drag and drop techniques allow items to be moved
or combined with other entities or actions.

With the addition of electronic pen devices, gestural drawings add a new
dimension direct manipulation interfaces. Gestures allow users to communicate
a surprisingly wide range of meaningful requests with a few simple strokes. Re-
search has shown that multiple gestures can be combined to form dialog, with
rules of temporal grouping overriding temporal sequencing (Rhyne, [1987). Ges-
tural commands are particularly applicable to graphical or editing type tasks.

Direct manipulation interactions possess many desirable qualities: commu-
nication is generally fast and concise; input techniques are easy to learn and
remember; the user has a good idea about what can be accomplished, as the vi-
sual presentation of the available actions is generally easily accessible. However,
direct manipulation suffers from limitations when trying to access or describe
entities which are not or can not be visualized by the user.

Limitations of direct manipulation style interfaces can be addressed by an-
other interface technology, that of natural language interfaces. Natural language
interfaces excel in describing entities that are not currently displayed on the
monitor, in specifying temporal relations between entities or actions, and in
identifying members of sets. These strengths are exactly the weaknesses of di-
rect manipulation interfaces, and concurrently, the weaknesses of natural lan-
guage interfaces (ambiguity, conceptual coverage, etc.) can be overcome by the
strengths of direct manipulation.

Natural language content can be entered through different input modalities,
including typing, handwriting, and speech. It is important to note that, while
the same textual content can be provided by the three modalities, each modality
has widely varying properties.

— Spoken language is the modality used first and foremost in human-human
interactive problem solving (Cohen et al., [[990). Speech is an extremely fast
medium, several times faster than typing or handwriting. In addition, speech
input contains content that is not present in other forms of natural language
input, such as prosidy, tone and characteristics of the speaker (age, sex,
accent).

— Typing is the most common way of entering information into a computer,
because it is reasonably fast, very accurate, and requires no computational
resources.

— Handwriting has been shown to be useful for certain types of tasks, such as
performing numerical calculations and manipulating names which are dif-
ficult to pronounce (Oviatt, 1994} Oviatt and Olson, [1994)). Because of its
relatively slow production rate, handwriting may induce users to produce
different types of input than is generated by spoken language; abbrevia-
tions, symbols and non-grammatical patterns may be expected to be more
prevalent amid written input.

Multimodal Maps: An Agent-Based Approach 113
2.2 Combination of Modalities

As noted in the previous section, direct manipulation and natural language seem
to be very complementary modalities. It is therefore not surprising that a number
of multimodal systems combine the two.

Notable among such systems is the Cohen’s Shoptalk system (Cohen, [1992)),
a prototype manufacturing and decision-support system that aids in tasks such
as quality assurance monitoring, and production scheduling. The natural lan-
guage module of Shoptalk is based on the Chat-85 natural language system
(Warren and Perreira, 1982) and is particularly good at handling time, tense,
and temporal reasoning.

A number of systems have focused on combining the speed of speech with the
reference provided by direct manipulation of a mouse pointer. Such systems in-
clude the XTRA system (Allegayer et al, 1989), CUBRICON (Neal and Shapiro,
1997)), the PAC-Amodeus model (Nigay and Coutaz,[1993)), and TAPAGE (Faure
and Julia, [1994)).

XTRA and CUBRICON are both systems that combine complex spoken
input with mouse clicks, using several knowledge sources for reference identifica-
tion. CUBRICON’s domain is a map-based task, making it similar to the applica-
tion developed in this paper. However, the two are different in that CUBRICON
can only use direct manipulation to indicate a specific item, whereas our sys-
tem produces a richer mixing of modalities by adding both gestural and written
language as input modalities.

The PAC-Amodeus systems such as VoicePaint and Notebook allow the user
to synergistically combine vocal or mouse-click commands when interacting with
notes or graphical objects. However, due to the selected domains, the natural
language input is very simple, generally of the style “Insert a note here”.

TAPAGE is another system that allows true synergistic combination of spo-
ken input with direct manipulation. Like PAC-Amodeus, TAPAGE’s domain
provides only simple linguistic input. However, TAPAGE uses a pen-based in-
terface instead of a mouse, allowing gestural commands. TAPAGE, selected as a
building block for our map application, will be described more in detail in Sect.
4.2.

Other interesting work regarding the simultaneous combination of handges-
tures and gaze can be found in Bolt (T980) and Koons, Sparrell and Thorisson
(1993).

3 A Multimodal Map Application

In this section, we will describe a prototype map-based application for a travel
planning domain. In order to provide the most natural user interface possible, the
system permits the user to simultaneously combine direct manipulation, gestural
drawings, handwritten, typed and spoken natural language. When designing the
system, other criteria were considered as well:

114 Adam Cheyer and Luc Julia

Trawel Planning: San Francisco

il T

Plora vk o o bose 2o

i
1 L - mir=1p e, hnisle: 3= gimre

Fig. 1. Multimodal application for travel planning

— The user interface must be light and fast enough to run on a handheld PDA
while able to access applications and data that may require a more powerful
machine.

— Existing commercial or research natural language and speech recognition
systems should be used.

— Through the multimodal interface, a user must be able to transparently
access a wide variety of data sources, including information stored in HTML
form on the World Wide Web.

As illustrated in Fig. 1, the user is presented with a pen sensitive map dis-
play on which drawn gestures and written natural language statements may be
combined with spoken input. As opposed to a static paper map, the location, res-
olution, and content presented by the map change, according to the requests of
the user. Objects of interest, such as restaurants, movie theaters, hotels, tourist
sites, municipal buildings, etc. are displayed as icons. The user may ask the map
to perform various actions. For example :

— distance calculation : e.g. “How far is the hotel from Fisherman’s Wharf?”
object location : e.g. “Where is the nearest post office?”

— filtering : e.g. “Display the French restaurants within 1 mile of this hotel.”
information retrieval : e.g. “Show me all available information about Alca-
traz.”

The application also makes use of multimodal (multimedia) output as well
as input: video, text, sound and voice can all be combined when presenting an
answer to a query.

Multimodal Maps: An Agent-Based Approach 115

During input, requests can be entered using gestures (see Fig. 2 for sample
gestures), handwriting, voice, or a combination of pen and voice. For instance,
in order to calculate the distance between two points on the map, a command
may be issued using the following:

— gesture, by simply drawing a line between the two points of interest.

— woice, by speaking “What is the distance from the post office to the hotel?”.

— handwriting, by writing “dist p.o. to hotel?”

— synergistic combination of pen and voice, by speaking “What is the distance
from here to this hotel?” while simultaneously indicating the specified loca-
tions by pointing or circling.

Notice that in our example of synergistic combination of pen and voice, the
arguments to the verb “distance” can be specified before, at the same time, or
shortly after the vocalization of the request to calculate the distance. If a user’s
request is ambiguous or underspecified, the system will wait several seconds and
then issue a prompt requesting additional information.

The user interface runs on pen-equipped PC’s or a Dauphin handheld PDA
(Dauphin, [DTR-1 User’s Manual) using either a microphone or a telephone for
voice input. The interface is connected either by modem or ethernet to a server
machine which will manage database access, natural language processing and
speech recognition for the application. The result is a mobile system that provides
a synergistic pen/voice interface to remote databases.

In general, the speed of the system is quite acceptable. For gestural com-
mands, which are handled locally on the user interface machine, a response is
produced in less than one second. For handwritten commands, the time to rec-
ognize the handwriting, process the English query, access a database and begin
to display the results on the user interface is less than three seconds (assuming
an ethernet connection, and good network and database response). Solutions to
verbal commands are displayed in three to five seconds after the end of speech
has been detected; partial feedback indicating the current status of the speech
recognition is provided earlier.

= O —

Remove Select Mowve, Scroll, Select
Remove Zoom In Distance

Fig. 2. Sample gestures

116 Adam Cheyer and Luc Julia
4 Approach

In order to implement the application described in the previous section, we chose
to augment a proven agent- based architecture with functionalities developed for
a synergistically multimodal application. The result is a flexible methodology for
designing and implementing distributed multimodal applications.

4.1 Building Blocks

Open Agent Architecture. The Open Agent Architecture (OAA) (Cohen
et al., [1994)) provides a framework for coordinating a society of agents which
interact to solve problems for the user. Through the use of agents, the OAA
provides distributed access to commercial applications, such as mail systems,
calendar programs, databases, etc.

The Open Agent Architecture possesses several properties which make it a
good candidate for our needs:

— An Interagent Communication Language (ICL) and Query Protocol have
been developed, allowing agents to communicate among themselves. Agents
can run on different platforms and be implemented in a variety of program-
ming languages.

— Several natural language systems have been integrated into the OAA which
convert English into the Interagent Communication Language. In addition,
a speech recognition agent has been developed to provide transparent access
to the Corona speech recognition system.

— The agent architecture has been used to provide natural language and agent
access to various heterogeneous data and knowledge sources.

— Agent interaction is very fine-grained. The architecture was designed so that
a number of agents can work together, when appropriate in parallel, to pro-
duce fast responses to queries.

The architecture for the OAA, based loosely on Schwartz’s FLiPSiDE system
(Schwartz, [1993)), uses a hierarchical configuration where client agents connect to
a “facilitator” server. Facilitators provide content-based message routing, global
data management, and process coordination for their set of connected agents.
Facilitators can, in turn, be connected as clients of other facilitators. Each facil-
itator records the published functionality of their sub-agents, and when queries
arrive in Interagent Communication Language form, they are responsible for
breaking apart any complex queries and for distributing goals to the appropri-
ate agents. An agent solving a goal may require supporting information and
the agent architecture provides numerous means of requesting data from other
agents or from the user.

Among the assortment of agent architectures, the Open Agent Architecture
can be most closely compared to work by the ARPA knowledge sharing commu-
nity (Genesereth and Singh, [1994)). The OAA’s query protocol, Interagent Com-
munication Language and Facilitator mechanisms have similar instantiations in

Multimodal Maps: An Agent-Based Approach 117

the SHADE project, in the form of KQML, KIF and various independent capabil-
ity matchmakers. Other agent architectures, such as General Magic’s Telescript
(General Magic, [1995), MASCOS (Park et al, [submitted)), or the CORBA dis-
tributed object approach (Object Management Group, [1991]) do not provide as
fully developed mechanisms for interagent communication and delegation.

The Open Agent Architecture provides capability for accessing distributed
knowledge sources through natural language and voice, but it is lacking integra-
tion with a synergistic multimodal interface.

TAPAGE. TAPAGE (edition de Tableaux par la Parole et la Geste) is a syn-
ergistic pen/voice system for designing and correcting tables.

To capture signals emitted during a user’s interaction, TAPAGE integrates
a set of modality agents, each responsible for a very specialized kind of signal
(Faure and Julia, 1994). The modality agents are connected to an ‘interpret
agent’ which is responsible for combining the inputs across all modalities to
form a valid command for the application. The interpret agent receives filtered
results from the modality agents, sorts the information into the correct fields,
performs type-checking on the arguments, and prompts the user for any missing
information, according to the model of the interaction. The interpret agent is also
responsible for merging the data streams sent by the modality agents, and for
resolving ambiguities among them, based on its knowledge of the application’s
internal state. Another function of the interpret agent is to produce reflexes:
reflexes are actions output at the interface level without involving the functional
core of the application.

The TAPAGE system can accept multimodal input, but it is not a distributed
system; its functional core is fixed. In TAPAGE, the set of linguistic input is
limited to a verb object argument format.

4.2 Synthesis

In the Open Agent Architecture, agents are distributed entities that can run
on different machines, and communicate together to solve a task for the user.
In TAPAGE, agents are used to provide streams of input to a central interpret
process, responsible for merging incoming data. A generalization of these two
types of agents could be:

Macro Agents: contain some knowledge and ability to reason about a domain,
and can answer or make queries to other macro agents using the Interagent
Communication Language.

Micro Agents: are responsible for handling a single input or output data
stream, either filtering the signal to or from a hierarchically superior ‘interpret’
agent.

The network architecture that we used was hierarchical at two resolutions:
micro agents are connected to a superior macro agent, and macro agents are
connected in turn to a facilitator agent. In both cases, a server is responsible for
the supervision of its client sub-agents.

118 Adam Cheyer and Luc Julia

In order to describe our implementation, we will first give a description of
each agent used in our application and then illustrate the flow of communication
among agents produced by a user’s request.

Speech Recognition (SR) Agent: The SR agent provides a mapping from the
Interagent Communication Language to the API for the Decipher (Corona)
speech recognition system (Cohen et al., [990), a continuous speech speaker
independent recognizer based on Hidden Markov Model technology. This macro
agent is also responsible for supervising a child micro agent whose task is to con-
trol the speech data stream. The SR agent can provide feedback to an interface
agent about the current status and progress of the micro agent (e.g. “listening”,
“end of speech detected”, etc.) This agent is written in C.

Natural Language (NL) Parser Agent: translates English expressions into the
Interagent Communication Language (ICL). For a more complete description of
the ICL, see Cohen et al. (Cohen et al., [1994). The NL agent we selected for
our application is the simplest of those integrated into the OAA. It is written in
Prolog using Definite Clause Grammars, and supports a distributed vocabulary;
each agent dynamically adds word definitions as it connects to the network.
A current project is underway to integrate the Gemini natural language sys-
tem (Cohen et al., [1990)), a robust bottom up parser and semantic interpreter
specifically designed for use in Spoken Language Understanding projects.

Database Agents: Database agents can reside at local or remote locations
and can be grouped hierarchically according to content. Micro agents can be
connected to database agents to monitor relevant positions or events in real
time. In our travel planning application, database agents provide maps for each
city, as well as icons, vocabulary and information about available hotels, restau-
rants, movies, theaters, municipal buildings and tourist attractions. Three types
of databases were used: Prolog databases, X.500 hierarchical databases, and
data loaded automatically by scanning HTML pages from the World Wide Web
(WWW). In one instance, a local newspaper provides weekly updates to its
Mosaic-accessible list of current movie times and reviews, as well as adding sev-
eral new restaurant reviews to a growing collection; this information is extracted
by an HTML reading database agent and made accessible to the agent archi-
tecture. Descriptions and addresses of new restaurants are presented to the user
on request, and the user can choose to add them to the permanent database
by specifying positional coordinates on the map (e.g. “add this new restaurant
here”), information lacking in the WWW database.

Reference Resolution Agent: This agent is responsible for merging requests
arriving in parallel from different modalities, and for controlling interactions
between the user interface agent, database agents and modality agents. In this
implementation, the reference resolution agent is domain specific: knowledge is
encoded as to what actions must be performed to resolve each possible type of
ICL request in its particular domain. For a given ICL logical form, the agent can
verify argument types, supply default values, and resolve argument references.
Some argument references are descriptive (“How far is it to the hotel on Emerson
Street?”); in this case, a domain agent will try to resolve the definite reference by

Multimodal Maps: An Agent-Based Approach 119

sending database agent requests. Other references, particularly when contextual
or deictic, are resolved by the user interface agent (“What are the rates for this
hotel?”). Once arguments to a query have been resolved, this agent coordinates
the actions and calculations necessary to produce the result of the request.

Interface Agent: This macro agent is responsible for managing what is cur-
rently being displayed to the user, and for accepting the user’s multimodal input.
The Interface Agent also coordinates client modality agents and resolves ambi-
guities among them : handwriting and gestures are interpreted locally by micro
agents and combined with results from the speech recognition agent, running
on a remote speech server. The handwriting micro-agent interfaces with the
Microsoft PenWindows API and accesses a handwriting recognizer by CIC Cor-
poration. The gesture micro- agent accesses recognition algorithms developed
for TAPAGE.

An important task for the interface agent is to record which objects of each
type are currently salient, in order to resolve contextual references such as “the
hotel” or “where I was before.” Deictic references are resolved by gestural or
direct manipulation commands. If no such indication is currently specified, the
user interface agent waits long enough to give the user an opportunity to supply
the value, and then prompts the user for it.

‘ TRAVEL
.-".---- . P, i I s
S Franoisco Toew Yark Llser Resources |
T I s | ™ .
S I Y CHEN Ty e
(L MpDb ¥ R ™ o () I EE'-J-' Jl ER A _TT)
B M € " g\
B rling ard: .-\.I }_,"; I]) .I-_ 'I:' F) I_ -
| | Facilitator Agents | {BR: Apecch Recopmton Apenl
7™ Misro Agents { R Referense Resolution Agent |
orui i VLI Urser Iederface Apents :
L1155 11| Essedeeapetel 11! FWOIW: Woerld Wide Web Agent ;

Fig. 3. Agent Architecture for Map Application

We shall now give an example of the distributed interaction of agents for a
specific query. In the following example, all communication among agents passes

120 Adam Cheyer and Luc Julia

transparently through a facilitator agent in an undirected fashion; this process
is left out of the description for brevity.

1. A user speaks: “How far is the restaurant from this hotel?”

2. The speech recognition agent monitors the status and results from its micro
agent, sending feedback received by the user interface agent. When the string
is recognized, a translation is requested.

3. The English request is received by the NL agent and translated into ICL
form.

4. The reference resolution agent (RR) receives the ICL distance request con-
taining one definite and one deictic reference and asks for resolution of these
references.

5. The interface agent uses contextual structures to find what “the restaurant”
refers to, and waits for the user to make a gesture indicating “the hotel”,
issuing prompts if necessary.

6. When the references have been resolved, the domain agent (RR) sends
database requests asking for the coordinates of the items in question. It
then calculates the distance according to the scale of the currently displayed
map, and requests the user interface to produce output displaying the result
of the calculation.

5 Conclusions

By augmenting an existing agent-based architecture with concepts necessary for
synergistic multimodal input, we were able to rapidly develop a map-based ap-
plication for a travel planning task. The resulting application has met our initial
requirements: a mobile, synergistic pen/voice interface providing good natural
language access to heterogeneous distributed knowledge sources. The approach
used was general and should provide a for developing synergistic multimodal
applications for other domains.

The system described here is one of the first that accepts commands made
of synergistic combinations of spoken language, handwriting and gestural input.
This fusion of modalities can produce more complex interactions than in many
systems and the prototype application will serve as a testbed for acquiring a
better understanding of multimodal input.

In the near future, we will continue to verify and extend our approach by
building other multimodal applications. We are interested in generalizing the
methodology even further; work has already begun on an agent-building tool
which will simplify and automate many of the details of developing new agents
and domains.

References
[1989]Allegayer, J., Jansen-Winkeln, R., Reddig, C. and Reithinger, N. (1989) Bidirec-

tional use of knowledge in the multi-modal NL access system XTRA. In Proceedings
of IJCAI-89, Detroit, pp. 1492-1497.

Multimodal Maps: An Agent-Based Approach 121

[1980]Bolt, R. (1980) Put that there: Voice and Gesture at the Graphic Interface,
Computer Graphics, 14(3), pp. 262-270.

[1990]Cohen, M., Murveit, H., Bernstein, J., Price, P., and Weintraub, M. (1990) The
DECIPHER Speech Recognition System. In 1990 IEEE ICASSP, pp. 77-80.

[1992]Cohen, P. (1992) The role of natural language in a multimodal interface. In
Proceedings of UIST’92, pp. 143-149.

[1994]Cohen, P.R., Cheyer, A., Wang, M. and Baeg, S.C. (1994) An Open Agent Ar-
chitecture. In Proceedings AAAI’9, — SA, Stanford, pp. 1-8.

[DTR-1 User’s Manual] Dauphin DTR-1 User’s Manual, Dauphin Technology, Inc.,
Lombard, Ill 60148.

[1994]Faure, C. and Julia, L. (1994) An Agent-Based Architecture for a Multimodal
Interface. In Proceedings AAAI’94 — IM/S, Stanford, pp. 82-86.

[1994]Genesereth, M. and Singh, N.P. (1994) A knowledge sharing approach to software
interoperation, unpublished manuscript, Computer Science Department, Stanford
University.

[1995] Telescript Product Documentation (1995), General Magic Inc.

[1993]Koons, D.B., Sparrell, C.J., and Thorisson, K.R. (1993) Integrating Simultaneous
Input from Speech, Gaze and Hand Gestures. In Intelligent Multimedia Interfaces,
Maybury, M.T. (ed.), Menlo Park: AAAI Press/MIT Press.

[1993]Maybury, M.T. (ed.) (1993) Intelligent Multimedia Interfaces, Menlo Park: AAAI
Press/MIT Press.

[1991]Neal, J.G., and Shapiro, S.C. (1991) Intelligent Multi-media Interface Technol-
ogy. In Intelligent User Interfaces, Sullivan, J.W. and Tyler, S'W. (eds.), Reading:
Addison-Wesley Pub. Co., pp. 11-43.

[1993]Nigay, L. and Coutaz, J. (1993) A Design Space for Multimodal Systems: Concur-
rent Processing and Data Fusion. In Proceedings InterCHI’93, Amsterdam, ACM
Press, pp. 172-178.

[1991]Object Management Group (1991) The Common Object Request Broker: Archi-
tecture and Specification, OMG Document Number 91.12.1.

[1994]Oviatt, S. (1994) Toward Empirically-Based Design of Multimodal Dialogue Sys-
tems. In Proceedings of AAAI’94 — IM4S, Stanford, pp. 30-36.

[1994]Oviatt, S. and Olsen, E. (1994) Integration Themes in Multimodal Human-
Computer Interaction. In Proceedings of ICSLP’9/, Yokohama, pp. 551-554.

[submitted]|Park, S.K., Choi J.M., Myeong-Wuk J., Lee G.L., and Lim Y.H. (submitted
for publication), MASCOS : A Multi-Agent System as the Computer Secretary.

[1987]Rhyne J. (1987) Dialogue Management for Gestural Interfaces, Computer Graph-
ics, 21(2), pp. 137-142.

[1993]|Schwartz, D.G. (1993) Cooperating heterogeneous systems: A blackboard-based
meta approach, Technical Report 93-112, Center for Automation and Intelligent
Systems Research, Case Western Reserve University, Cleveland Ohio, (unpublished
PhD. thesis).

[1991]Sullivan, J. and Tyler, S. (eds.) (1991) Intelligent User Interfaces, Reading:
Addison-Wesley Pub. Co.

[1982]Warren, D. and Pereira, F. (1982) An Efficient Easily Adaptable System for
Interpreting Natural Language Queries, American Journal of Computational Lin-
guistics, 8(8), pp. 110-123.

	Introduction
	Natural Input
	A Multimodal Map Application
	Approach
	Conclusions

