
MVIEWS: Multimodal Tools for the Video Analyst

Adam Cheyer Luc Julia
Artificial Intelligence Center STAR Laboratory

SRI International SRI International
333 Ravenswood Avenue 333 Ravenswood Avenue
Menlo Park, CA 94025 Menlo Park, CA 94025

+1 415 859 4119 +1 415 859 4269
cheyer@ai.sri.com julia@speech.sri.com

ABSTRACT

Full -motion video has inherent advantages over still
imagery for characterizing events and movement. Military
and intelligence analysts currently view li ve video imagery
from airborne and ground-based video platforms, but few
tools exist for efficient exploitation of the video and its
accompanying metadata. In pursuit of this goal, SRI has
developed MVIEWS, a system for annotating, indexing,
extracting, and disseminating information from video
streams for surveil lance and intelligence applications.
MVIEWS is implemented within the Open Agent
Architecture, a distributed multiagent framework that
enables rapid integration of component technologies; for
MVIEWS, these technologies include pen and voice
recognition and interpretation, image processing and object
tracking, geo-referenced interactive maps, multimedia
databases, and human collaborative tools.

Keywords

Multimodal pen and voice user interfaces, image
processing and object tracking, video analysis and
annotation, agent architecture.

INTRODUCTION

Although sophisticated tools are now starting to appear that
assist an image analyst in manipulating stil l photos, few
systems exist to help an operator efficiently exploit full -
motion video. Given video’s inherent advantages for
characterizing events and movement in a scene, the role of
video analysis is taking on increased importance in
military, intelligence, and surveill ance domains. By
considering how video can be best exploited in these
contexts, we realize that video analysis poses new
challenges and opportunities:

� At the 1996 Atlanta Olympics, after a bomb went off
inside of Olympic Park, investigators had to deal with

the task of thoroughly searching for clues within some
600 amateur videos related to the incident. Had there
been better tools available for indexing, time stamping,
annotating, classifying and cross-referencing the
videos, this process would have been much more
manageable.

� The U.S. military, as part of peacekeeping and
intelligence missions, routinely sends unmanned
Predator airplanes over target sites of interest. While
pilots remotely guide the airplane over the terrain, a
second team of analysts is responsible for extracting
information of relevance from the video and associated
metadata. Although all results of these missions are
recorded on videocassette, there is currently no
automated method for querying this data repository at
a later date. A searchable index would help ensure that
this resource is not wasted, and providing the abil ity to
replay audio and written annotations would help the
analysts reviewing a video to quickly establi sh context
for what they are seeing.

� In many surveill ance or security-related tasks, a single
operator is responsible for monitoring the output of
many cameras distributed throughout the site. Object
detection and tracking, in conjunction with automated
alerts and sensor management, can augment the
operator’s ability to efficiently comprehend and fuse
numerous information streams.

In this paper, we present a demonstration system called
MVIEWS, for Multimodal Video Imagery Exploitation
WorkStation, that attempts to address some of these
challenges by bringing together multiple commercial and
research technologies into a single toolset. Although each
technology is interesting by itself, it is the integrated use of
these capabil ities that can greatly enhance the effectiveness
of a video analyst.

SYSTEM DESCRIPTION AND DESIGN

Design Approach

The original design for MVIEWS was based on a vision
and on a set of guiding principles. The vision can be
described as follows.

Imagine a single operator at a terminal, exploiting ten
ground and aerial video sensors. Software agents are
providing real-time object detection, alerts, queuing,
tracking, and information fusion. The operator uses only
voice commands and an electronic pen to control the
workstation and sensors, to add multimodal annotations to
the video streams, and to collaborate with operations and
intelligence speciali sts at remote locations. As a situation
develops, agents and humans work together on assessment
and characterization, while documenting the process
through semiautomaticall y generated reports.

When setting out in pursuit of this vision, we tried to also
keep in mind a few frequently overlooked design criteria:

� People are indispensable. They are good at processing
complex visual problems, but they are subject to
fatigue and boredom. Automation is an aid, not a
replacement.

� User interfaces for complex tasks can quickly become
complex. We needed to create as natural, invisible and
efficient an interface as possible, combining graphical
user interface (GUI) techniques when effective with
other, more fluid modalities, such as speech and pen.

� The utility of information greatly increases in
conjunction with other supporting information. Thus,
we required an open and extensible system that places
the needed information and tools at the operator’s
fingertips.

System Description

The first public demonstration of MVIEWS was given at
the Exploitation Technology Symposium (ETS-97) held at
Naval Research and Development (NRAD) headquarters in
San Diego. Describing this event wil l provide a good

overview of how the current MVIEWS implementation can
be used.

Given the visuals provided by NRAD’s location, we chose
to exhibit MVIEWS using a border patrol scenario. After
securing the necessary permits, we installed a camera on
the roof of the demonstration building, such that it
overlooked activity in the harbor below and at a nearby
military airport. Our video analyst could investigate the
movements of small recreational boats, an occasional
commercial or military ship, plenty of windsurfers, and a
few airplanes and helicopters.

Inside the exposition’s demonstration facili ties, an operator
was seated in front of a Sun1 Ultrasparc 1 computer,
monitoring the li ve video feed. The operator interacts with
MVIEWS by using pen and voice (Figure 1), to perform
one of the following functions:

� Add annotations, simply by speaking and drawing
directly on top of the video. As an example, a
surveil lance operator might speak «The movements of
this motorboat appear unusual» while drawing a circle
around the vessel and tracing its path using the pen.

� Generate reports, constructed from multimodal input
and multimedia data. A typical interaction might
contain: «Report, convoy of three vehicles, heading
rapidly west along access road.» This information
would be saved with the video frame and associated
metadata, including time, date, camera type, and
spatial coordinates.

1All product or company names mentioned in this
document are the trademarks of their respective holders.

Figure 1. Video Player. Moving objects in surveillance
regions are tracked (plane). Multimodal commands can

target specific objects (boat).

 Figure 2. Multimodal Map. Objects tracked in a video are
simultaneously displayed on a geo-referenced map.

� Specify commands to the system, involving object
tracking (e.g., «Track this boat»), image processing
(e.g., «Stabilize image», «Grab this region»), and
setting alerts (e.g., «Notify me if this object moves» or
«If more than three objects enter this region, alert
me»).

� Collaborate with remote participants, for example
«Bob, can you identify this vehicle type?»

In addition to the video display, the operator could call up
an interactive map (Figure 2), simultaneously displaying
any objects tracked in the video as geo-referenced points in
2D space. The map display, also controlled through pen
and voice, provided additional information about the
region. For example, in the Predator UAV domain, the
map allows the operator to examine the terrain ahead of the
plane’s path, and call up supplementary data (e.g., «Show
me all military bases near here»).

As a means of attracting further attention to our ETS
demonstration, we sent out a person carrying a wireless
handheld pen computer to mingle with a reception
gathering nearby. After targeting a small group, the
demonstrator would show them the map display, look over
the balcony and say, «See that boat down there? It’s being
automaticall y tracked by software agents from a live video
image, and this computer is receiving the reports. Why
don’ t you go in there and check it out?»

Near the first workstation, we positioned another computer
where a second analyst could work collaboratively with the
first. While one operator monitored and annotated the
continuously advancing live video feed, the second was at
liberty to provide more detailed analyses of recorded
segments of the video. Using the Media Track Editor
(Figure 3) as his primary interface, the analyst navigated
within the video segment, requested image enhancements,
performed timing and distance measurements, and queried
the multimedia database for other video segments of
interest. The Media Track Editor is structured as a
timeline, with annotations, extracted frames and clips, and
recognized speech and pen clearly highlighted. By
providing an interface for quickly skimming through a

video clip and replaying selected sections along with their
multimodal annotations, MVIEWS establi shes context for
what the analyst is examining, accenting what was
important to the operator at the time the video was
recorded. Instead of fast forwarding through the entire
video clip to understand its content, an analyst can save
time by perusing annotations from the timeline at different
granularities of detail.

IMPLEMENTATION

To implement MVIEWS, we needed to quickly integrate
numerous technologies, written in a variety of
programming languages, some requiring specialized
computer hardware. To facili tate a loosely coupled,
dynamic, heterogeneous and distributed integration, we
took advantage of the services provided by the Open Agent
Architecture

�

 (OAA
�

).2

The Open Agent Architecture

Similar in objective to distributed object frameworks such
as OMG’s CORBA or Microsoft’s DCOM, a distributed
agent architecture such as the OAA can provide integration
of components written in different programming
languages3 and running on different platforms.4 However,
OAA agents possess qualities beyond ordinary distributed
objects. Agent interactions are more flexible and adaptable
than tightly bound IDL5 method calls in CORBA or
DCOM, and are able to take advantage of paralleli sm and
dynamic execution of complex goals. Instead of

2For more information about the OAA, see
http://www.ai.sri.com/~oaa/

3 Programming languages: C, C++, Prolog, Lisp, Java,
Borland Delphi, and Microsoft Visual Basic.

4 Platforms: UNIX (SunOs, Solaris, Lynx), Windows (3.1,
95, NT), all Java platforms.

5 Interface Definition Language: specifies an object’s
methods using a C++-li ke header file.

Figure 3. Media Track Editor. A video is replayed with
multimedia overlays, and indexed fields are located in the

video or the video database.

Figure 4. MVIEWS architecture.

preprogrammed unitary method calls to known object
services, an agent can express its requests in terms of a
high-level logical description of what it wants done, along
with optional constraints specifying how the task should be
performed. This information is processed by one or more
Facil itator agents, which plan, execute and monitor the
coordination of the subtasks required to accomplish the end
goal.

The OAA has been used to implement more than twenty
different applications, including

� Multi-robot control and coordination [4]
� Office automation and unified messaging [2]
� Collaborative multimodal user interfaces [1, 12]
� Frontends [8] and backends [11] for the Web
� Development tools [10] for creating and assembling

new agents with the OAA

 Each OAA project can take advantage of the core services
provided by the architecture as well as of the growing
number of technologies now accessible through an agent
interface. These services and technologies include speech
recognition, natural language understanding, text
extraction, multimodal fusion and reference resolution,
reactive planning, virtual realit y, image processing, web-
related technologies, user modeling, and collaboration
tools.

 The core services of the OAA are implemented by an agent
library, which has been ported to several different
programming languages, working closely with a Facil itator
agent, responsible for domain-independent coordination
and routing of information and goals. These basic services
can be classified into three areas: agent communication and
cooperation, distributed data services, and trigger
management.

 Interagent Communication Language

 The Interagent Communication Language (ICL) provides
the means for interaction among agents. When an agent
wants to make a request of the agent community, it
describes the goal i t wants achieved as well as parameters
specifying constraints on how the goal is to be
accomplished. The request is sent to a Facil itator agent,
which uses the declarative specifications it stores about
each agent’s capabilities, and the parameters defined for the
incoming goal, to produce a full y specified execution plan
detailing tasks for distributed agents to perform. The
Facil itator agent is then responsible for monitoring and
coordinating the execution of the plan, by routing requests
(potentially to agents in parallel), collecting results,
backtracking when subgoals fail, and finally providing the
results to the requesting agent.

ICL requests are expressed using the syntax and semantics
of Prolog, a decision influenced by our desire to involve the
user as closely as possible in agent interactions. ICL

expressions can be generated from the Prolog-based logical
forms produced by many natural language parsers, allowing
the user to make requests of the agent community in plain
English. As a simple example, the English request «What
is the telephone number of John Bear’s manager?» would
be converted to the ICL expression:

oaa_Solve((manager(‘John Bear’, M),
phone_number(M, P)),
[query(var(P))]).

Parameters can specify both low-level constraints or high-
level advice. Examples of low-level constraints might
include the maximum amount of time for the solution, the
maximum number of solutions returned for a query, how
the information should be returned (e.g., as a blocking call
or asynchronous streamed response), and rarely, which
agents are allowed to participate in the computation.

As an example of high-level advice parameters, notice that
the way paralleli sm should occur depends on the type of
task being solved. If three email agents are available on the
network, the request «Send this by email to Luc» should
probably not be sent to all three agents at once, but rather if
the first doesn’t succeed, the others should be tried in
succession. Compare this with a database query, where it
might be very desirable to send the request in parallel to as
many available agents as possible. When solving a math
problem, different answers returned by different
mathematicians could signal a problem, whereas if the
participants are students composing poems, varied answers
are a requirement.

Data Management

OAA’s distributed data facil ities share much in common
with the distributed goal resolution process described in the
previous section. In the same way that agents register the
tasks they are capable of performing, agents also declare
descriptions of the data they manage. An agent can then
add, delete, change, or query a data value, and this request
will be automaticall y routed by the Facilitator agent to the
appropriate agent or agents.

Data declarations and functions also make use of the notion
of parameter lists. In this case, parameters specify
information about permissions, scoping, persistence,
whether duplicate values are allowed, and so forth. Data
parameters are also used provide synchronous collaboration
features to OAA applications; the ‘shareable’ attribute
determines whether a data value is synchronized among all
participants of a distributed collaborative session.

Triggers

Triggers allow an agent, or set of agents, to monitor some
potentially complex state in the world, performing an
action if the trigger’s test conditions become true.

Triggers or rules exist in many commercial systems today;
for instance, mail programs often allow the user to define

actions (e.g., delete, archive, forward) to perform if an
email of a certain type arrives. However, in these systems,
the action must be predefined and fixed. With OAA
triggers, the action part of a trigger may be any compound
task executable by the dynamic community of agents. As
new, perhaps unanticipated, agents connect to the system at
runtime, what the user can say and do literally changes.
For instance, if a new fax agent suddenly becomes
available, the user can now say or write «If email arrives…,
fax it to Bil l», even if this action had never been conceived
of by the original developers of the application.

Four types of triggers are currently defined by the OAA:

1• Data triggers: «If the airline flight time changes…»

2• Time triggers: «In ten minutes…», «every Thursday
from now until Christmas…»

3• Communication triggers: «If any agent sends Msg…»

4• Task triggers (specific to the domain of a particular
agent): «If mail arr ives about…», «If this Web page
changes …»

Triggers are stored using the data management facil ities, so
they can be added, deleted, inspected, protected, and
automaticall y distributed li ke any other database predicate.

MVIEWS Component Technologies

The MVIEWS application is implemented as a collection of
OAA agents, as depicted in Figure 4; we’ ll now take a
closer look at each of the component technologies.

Video Player

Two separate video players have been adapted for use with
the MVIEWS system, each with slightly different
properties. The first is a public domain UNIX-based
program called XAnim, a software-based player capable of
displaying numerous video file formats, including MPEG
and AVI. The second, MP, was written to take advantage
of special libraries provided by Sun to access their
hardware video boards. MP can play either from MPEG
files or a video source (e.g., live camera or VCR). We are
considering integrating yet a third player to provide a
Windows PC solution.

The video players were adapted to work within the OAA
framework by including the OAA agent library, and by
publishing the video players’ capabili ties using the ICL
formalism. In addition, the programs were extended to
permit drawing on top of the video by using a mouse or
electronic pen.

Speech Recognition

Speech recognition (SR) is used both for entering
commands to the system and for extracting content from a
user’s verbal annotations for video indexing and report
generation. The SR technology used by MVIEWS is a
large vocabulary, continuous speech, speaker-independent
system developed at SRI’ s STAR Laboratory and then

commercialized by a spin-off company, Nuance
Communications.6 The recognizer is based on a hidden
Markov model approach, and takes as input a set of models
either compiled from a regular expression grammar
notation, or constructed through a learning process over a
large corpus of data. In the current demonstration system, a
grammar defines the set of possible spoken commands, as
well as the set of keywords and phrases that can be
recognized from annotations or verbal reports.

Natural Language

Two aspects of natural language (NL) processing are used
within the MVIEWS system to handle the results from the
speech recognition process: NL understanding, to interpret
commands to the system, and information extraction from
text, to produce indices, summarizations, and reports from
spoken annotations.

The OAA is often used to integrate different levels of NL
understanding, depending upon the requirements of the
system. In most OAA-based systems, prototypes are
initiall y constructed using relatively simple NL
components, and as the vocabulary and grammar
complexities grow, more powerful technologies can be
incrementally added. The current MVIEWS demonstration
system has a relatively limited set of commands that are
processed by two of our low-end NL systems: Nuance’s
template-slot tools and DCG-NL, a Prolog-based top-down
parser. As the MVIEWS prototype matures, more eff icient
NL systems can be added, such as Gemini, a robust bottom-
up parser based on unification grammars, which interleaves
syntax and semantics.

A current DARPA-funded project, which wil l be folded
into the MVIEWS system, focuses on the information
extraction task in the Predator domain. Applying SRI’ s
FASTUS [6] and adding better domain coverage for speech
recognition wil l be an improvement over the current
implementation, which is based on simple keyword
spotting and a hand-coded grammar defining possible
reported utterances.

Pen Recognition and Annotation

The pen modality is used in conjunction with speech to add
multimodal annotations to a video document, and to issue
commands to the system. For commands, a set of pen
gestures (Figure 5) can be recognized using algorithms
developed in [9].

In our experience, most pen annotations made by users also
fall into the class of gestures, usually supplemented by a
descriptive audio annotation. Since handwriting has rarely
been used, incorporating handwriting recognition into the
system has been a low-priority task. However, UNIX-
based handwriting recognition libraries have been obtained

6 http://www.nuancecom.com/

from Communications Intelligence Corporation (CIC7),
another SRI spin-off company, and may play an important
role for labeling objects with out-of-vocabulary names, a
task diff icult for speech recognition systems.

Image Processing and Object Tracking

The problem with most image processing and object
tracking algorithms is that they are often highly speciali zed,
working well for certain situations and not at all in others.
An image and video analyst needs to have an entire library
of routines at his or her call.

In the current MVIEWS prototype, we have integrated
several image functions, such as stabilization and extraction
of selected regions, as well as two object tracking
algorithms.

The first of the two tracking algorithms is adapted for
detecting fast-moving, relatively small objects within
specified surveil lance regions in the image. This process
requires specialized hardware, running on a Datacube Max
Video 200 pipeline image processing system (MV200) with
a Motorola 68040 host processor. The Lynx operating
system on the MV200 is capable of reading and writing
directly in the image memories, using a VME bus. The
signal from the incoming video stream is digitized into 256
gray levels and then processed at close to 15 frames per
second. Each processing step involves detection of motion
between adjacent image frames, followed by temporal
correspondence to correlate the moving segments in the
video sequence. The strength of the approach is in the
temporal association process, which is capable of handling
occlusions of moving targets and false alarms from the
motion algorithm. As moving targets are detected, their
position and ID are passed through the OAA to all
interested agents.

The second tracking algorithm, running locall y on the Sun
Ultrasparc workstation, is good at tracking slow-moving
objects, given their initial position (e.g., «Track this car»,
or «If this boat moves, notify me»). This routine works by
comparing via convolution a small subimage of the current
video frame with a same-sized subimage from the previous
frame. Tracking is initiated by selection of a seed
subimage covering the object to be tracked. In our
experiments, these subimages ranged in size from 11x11 to

7 http://www.cic.com/

27x27 pixels, depending on the size of the object to be
tracked. The object model is formed by storing the location
of the subimage within the frame along with the pixel
values of the subimage and the square root of the sum of all
pixel values within the subimage.

To find the location of the tracked object in a new frame,
we find the local maximum of convolution scores by
shifting the model subimage around the neighborhood of its
previous location. When a local maximum is found, the
pixel values of the subimage centered at that location in the
new frame are taken as the new model. The model is
updated every frame. The benefit is that the model can
adapt to changing views of the tracked object. The
drawback is that the algorithm can sometimes be fooled
when a tracked object moves into a region where it cannot
be distinguished from the background.

Multimodal Map

The multimodal map (MMAP) component of the MVIEWS
system allows a user to interact with a dynamic map
display through a natural combination of speaking, writing,
and drawing directly on the map surface. Multiple
modalities may be entered simultaneously or in any
sequential order, and merged to produce a command or
request. This fusion makes use of the inherent parallelism
of the OAA, with multiple agents competing and
cooperating to resolve ambiguities arising during the
interpretation process.

The multimodal map has been used in various OAA
applications, such as providing a natural user interface to
travel-related sources on the Web [1], and for guiding and
monitoring multiple mobile robots [4]. Adding MMap’s
functionality as part of the MVIEWS application
demonstrates OAA’s extensibil ity and flexibil ity, in that no
code had to be written to incorporate the technology into
the MVIEWS domain.

Human Collaborative Tools

Within the OAA, a human user wil l typicall y interact with
distributed software agents, and the agents themselves will
communicate and cooperate with each other. A natural
extension to this paradigm is to allow multiple human users
to work with each other in a collaborative fashion.

The OAA has been extended to include services that
facilit ate adding synchronous collaborative functionality to
any OAA-based user interface. The session management,
state replication and an activity-based floor mechanism are
provided in a peer-to-peer topology by the Synchronous
Collaborative Object Oriented Toolkit (SCOOT) [3],
developed by SRI’ s Augmented Collaboration Group, or
alternatively by a purely OAA-based collaboration
mechanism (centralized).

Lessons Learned

Although we have not yet run formal experiments to

Figure 5. Gesture set.

evaluate the util ity of the MVIEWS system, our
experiences do suggest several lessons.

The first is simply that that there is a strong need in the
Intelligence community for better tools to help an analyst
interact more efficiently with video. Video’s role in the
analysis process is growing: in the case of the Predator
UAV, its camera was originall y intended strictly as sensor
for the pilot to guide the plane, but ended up playing a role
in battlefield assessment. In general, the MVIEWS concept
has been well received at ETS and elsewhere, and many
viewers have suggested domains to which it could be
applied.

On the implementation side, two important questions were:
how much and what kind of information should flow
among distributed agents; and how should we deal with
inaccuracies in technologies such as speech recognition or
image processing.

Regarding information routing, we chose to limit interagent
exchange to messages containing semantic representations
of the data, not the data itself (instead of moving video
across a network, we spli t the physical cables so each
machine could have a local input source). Agents registered
triggers, filters and constraints on broadcast data (as
described in the section on OAA) and simple heuristics
were inserted for regulating the rate with which information
needed to be updated: a fast moving object requires more
frequent updates, than a slow one. Clearly, our simple
prototype has not solved all hard problems in this area;
however the facil itated approach seems promising for
managing an efficient data flow.

Regarding recognition technologies, we found that speech
and pen are currently reliable enough to be of use for
controlling tasks in the user interface, but that for other
tasks (speech: transcription of annotations; image
processing: object tracking), recognition technologies
produce imperfect results given a broad class of input. We
chose to design MVIEWS such that as these technologies
mature, they can take on an increased role. Multimedia
annotation and playback are reliable and useful features by
themselves, and provide data on which transcription and
classification technolgies can act in the future. An analyst
can apply image functions such as stabil ization and
enhancement with confidence, and then get a sense of when
this can be augmented by object tracking or detection.
With image processing, a single algorithm wil l not be
sufficient for all input, so we incorporated multiple
algorithms, with their use under the direction of the human
user. Eventually, we may be able to automate the decision
about under which conditions each should be used.

RELATED WORK

Commercially available tools provide much useful
functionality for video manipulation and annotation. One

good example is Z/Videoware from Z Microsystems.8

Z/Videoware allows a user to play digital video clips and
add audio annotations. It possesses an innovative feature
that tries to classify the video by examining the closed-
caption text embedded within, and then sorting the video
appropriately into different folders.

Another example of a system for video annotation and
analysis is VANNA [5]. This application provides a highly
tailorable user interface, and an efficient system for
annotating the video, using a variety of input devices, such
as mouse, trackball, keyboard, touch screen and electronic
pen.

Although commercial systems provide some of the
functionality that one would want for video annotation,
they are missing features that we feel are required for
effective video exploitation, such as collaboration, natural
user interfaces, and the ability to call up a variety of related
data and tools from the same user interface. Although
several research systems attempt to apply more advanced
technologies to image processing [13], we are not aware of
such systems focusing on video.

One effort that has a great deal in common with MVIEWS
is a DARPA-funded project called QuickTurn [7], by
MITRE and Carnegie Mellon University. MVIEWS and
QuickTurn share many of same goals (an integrated
environment combining advanced user interfaces with tools
and databases for the intelligence analyst) and technologies
(collaboration, mediated databases, maps, image tools).
However, MVIEWS attempts to focus its solutions within
the context of the video analyst (e.g., object tracking,
indexed search on pen and voice annotations).

CONCLUSIONS AND FUTURE DIRECTIONS

The current version of MVIEWS can only be considered a
working prototype system, but this IR&D project has
already shown potential for enhancing the tools and
techniques available in the domain of video exploitation
and analysis. By using an open, distributed approach as the
underlying architecture, we were able to rapidly bring
together pertinent technologies, and facili tate the future
development of the system as components are added,
improved or replaced. Although MVIEWS consists of a
number of capabil ities that are interesting by themselves, it
is the integrated use of these capabilities that can greatly
enhance the effectiveness of the operator.

Improvements and extensions wil l be made to the system.
One comparatively large project is already under way to
improve the speech recognition and data extraction from
annotations in the Predator domain, by combining robust
speech recognition and the FASTUS text extraction
software. Other improvements to MVIEWS wil l involve a
wider use of the collaboration technology, adding more

8Z Microsystems’ homepage: http://www.zmicro.com/

object tracking and image processing techniques, and
identifying and integrating additional video-related
technologies. We wil l also pursue the opportunity to
perform user experiments to better quantify benefits of the
system.

ACKNOWLEDGMENTS

This IR&D-funded project is the result of contributions
from many talented people spanning six centers within SRI.
The participants include: Jeff DeCurtins, Gopalan
Ravichandran, Bikash Sabata (video and image
processing), Greg Myers, Bob Bolles, Eric Rickard, Joel
Cain (vision, design and direction), Luc Julia, Adam
Cheyer (agent architecture, speech, gesture, handwriting).

REFERENCES

1• Cheyer, A. and Julia, L. Multimodal maps: An agent-
based approach. In Proc. of the International
Conference on Cooperative Multimodal
Communication (CMC/95), Eindhoven, May 1995.

2• Cohen, P., Cheyer, A., Wang, M., and Baeg, S. An
open agent architecture. In AAAI Spring Symposium,
pages 1—8. Stanford University, March 1994.

3• Craighill, E., Fong, M., Skinner, K., Lang, R., and
Gruenefeldt, K. SCOOT: An Object-Oriented Toolkit
for Multimedia Collaboration. In Proc. ACM
Multimedia ‘94, pages 41—49, San Francisco,
October 1994.

4• Guzzoni, D., Cheyer, A., Julia, L., and Konolige, K.
Many Robots Make Short Work. AI Magazine, Vol.
18, Number 1, pages 55—64. Spring 1997.

5• Harrison, B. L. and Baecker, R. M. Designing Video
Annotation and Analysis Systems. In Proc. of the
Graphics Interface 92 Conference, pages 157—166.
Vancouver, B.C., May 11-15, 1992.

6• Hobbs, J., Appelt, D., Bear, J., Israel, D., Kameyama,
M., Stickel, M., and Tyson, M. «FASTUS: a cascaded
finite-state transducer for extracting information from
natural-language text,» in Finite State Devices for
Natural Language Processing (E. Roche and Y.
Schabes, eds.), Cambridge MA: MIT Press, 1996.

7• Holland, Roderick. QuickTurn: Advanced Interfaces
for the Imagery Analyst. DARPA/ITO Intelligent
Collaboration & Visualization (IC&V) Program PI
Meeting. Dallas, Texas, October 10, 1996.
http://www.ito.darpa.mil/Proceedings/icv/agenda.html

8• Julia, L., Cheyer, A., Neumeyer, L., Dowding, J., and
Charafeddine, M.
HTTP://WWW.SPEECH.SRI.COM/DEMOS/ATIS. In
AAAI Spring Symposium, pages 72—76. Stanford
University, March 1997.

9• Julia, L., and Faure, C. Pattern recognition and
beautification for a pen-based interface. In ICDAR’95,

pages 58—63, Montreal, Canada, 1995.

10• Martin, D., Cheyer, A., and Lee, GL. Agent
development tools for the open agent architecture. In
Proc. of the International Conference on the Practical
Application of Intelligent Agents and Multi-Agent
Technology (PAAM). London, April 1996.

11• Martin, D., Oohama, H., Moran, D., and Cheyer, A.
Information brokering in an agent architecture. In
PAAM’97. London, April 1997.

12• Moran, D., Cheyer, A., Julia, L., and Park, S.
Multimodal user interfaces in the Open Agent
Architecture. In Proc. of IUI-97, pages 61—68.
Orlando, Jan. 1997.

13• Srihara, R., Zhang, Z., and Chopra, R. Show & Tell :
Using Speech Input for Image Interpretation and
Annotation. In AAAI-97 Spring Symposium, Workshop
on Intell igent Integration and Use of Text, Image,
Video and Audio Corpora, pages 17—24. Stanford
University, March 1997.

