
SRI International / 1996 AAAI Robot Contest

1

Many Robots Make Short Work
Report of the SRI International mobile robot team at AAAI96

Didier Guzzoni
Swiss Federal Institute of Technology

Adam Cheyer
Luc Julia

Kurt Konolige
Artificial Intelligence Laboratory, SRI International

1. Holding a meeting
At the SRI Artificial Intelligence Lab, we have a long history of building autonomous robots,

from the original Shakey (remember the STRIPS planner?) through Flakey [Congdon 1993] and more
recently, the Pioneer class of small robots. Our current research focuses on realtime vision for robots, and
multirobot planning using an agent-oriented architecture.

For the AAAI contest, we wanted to showcase our research, especially the ability to control
multiple robots using a distributed set of software agents on the Internet. The agent technology, called the
Open Agent Architecture (OAA), was developed at SRI as a way of accessing many different types of
information available in computers at different locations.

In the "hold a meeting" event, a robot starts from the Director's office, determines which of two
conference rooms is empty, notifies two professors where and when the meeting will be held, and then
returns to tell the Director. Points are awarded for accomplishing the different parts of the task, for
communicating effectively about its goals, and for finishing the task quickly. Our strategy was simple:
use as many robots as we could to cut down on the time to find the rooms and notify the professors. We
decided that three robots was an optimal choice: enough to search for the rooms efficiently, but not too
many to get in each other's way or strain our resources. We would have two robots searching for the
rooms and professors, and one remaining behind in the Director's office and tell her when the meeting
would be. We were concerned that leaving one robot behind as a mobile telephone was stretching things a
bit, so we cleared our strategy with the judges well before the contest.

The two search robots are Pioneer-class robots, portable robots first developed by SRI for
classroom use, and now manufactured by Real World Interfaces, Inc. They run SRI's Saphira control
software, which navigates the robots around an office environment, keeping track of where they are using
perceptual cues from the robot sensors. Each Pioneer robot has seven sonar sensors, a Fast Track vision

system from Newton Labs, and a portable computer on
top with a radio ethernet for communication to a base
station. The Fast Track system is an interesting device:
it consists of a small color video camera and a low-
power processor. It can be trained to recognize
particular colors, and will indicate the position of any
object with that color. We decided to use the vision
system to find people in the conference rooms, and
trained it to recognize red. If the judges would wear
red shorts, the vision system would easily pick them
out.

The robot in the Director's office didn't have
to move, just relay information to the Director. We
used a Koala robot, a small 6-wheeled vehicle under
development at the Swiss Federal Institute of
Technology. The Koala has infrared sensors, which

enable it to avoid obstacles, but make it difficult to map the environment because they do not give a
reliable range estimate. So we just kept the Koala stationary, with a portable PC on top to communicate
with the other robots and talk to the Director.

Figure 1 A Pioneer Robot with Laptop
Host Computer

SRI International / 1996 AAAI Robot Contest

2

Each robot, by virtue of the radio ethernet, is a node on the
internet and an agent in the OAA. Other agents, residing on the base
station, included a database agent for holding information relayed back
by the robots, a mapping agent for determining and displaying where the
robots are, a strategy agent for coordination, and interface agents
(speech, pen gestures) for giving the robots commands. If we had a
connection to the outside world, we could have run the robots from
anywhere in the world!

One of the interesting aspects of the agent architecture is that
the robots are capable of a good deal of autonomy. For example, the
strategy agent might tell them where to go, and even give them a path.
The robots are responsible for navigation, avoiding obstacles, and
finding the correct goal position. If they fail, they contact the strategy
agent about the problem and wait for instructions. The connection
between the robots and the rest of the agents can be very low bandwidth.

This was our strategy; now we had to execute it. We arrived at the contest late, during the
preliminary rounds, and hastily set up our base station and put in the map of the office environment. All
did not go smoothly --- several unanticipated coordination problems between the mapping agent and the
robots caused us some frustrating moments. We hadn't realized the planner would happily plan paths
through rooms with two doors, something the robots didn't like because they get lost easily in rooms and

do much better in the
corridors. And one of our
robots was injured in a fall
as we were packing up at
SRI; fortunately RWI was
there, and loaned us another
Pioneer. And so, late in the
evening of the second day,
we had a perfect
preliminary round run. The
map of Figure 3 diagrams
the paths of the two Pioneer
robots. Each of them
started out going to a
different conference room.
The green line robot arrived
at the first room, found it
occupied, and then started
heading for a professor’s
office. Meanwhile, the red
line robot reached the

second conference room, and after a short time decided there were no people present. It then went to the
second professor’s office.

The green line robot arrived at the professor’s office just a little ahead of the red line robot. As
the robots entered the professors’ offices, they announced the time of the meeting and the conference
room. At this point, the Koala robot announced the meeting to the Director, and the task was completed.

The next day, the finals, was almost an anticlimax, except for the large audience and the
presence of Alan Alda and the camera crew from Scientific American Frontiers. We started the Pioneers
out from the Director’s office, and they went happily on their way. There was too much going on to keep
track of both of them — they were both announcing what they were doing, the camera folks were dancing
around, and we had to tell the audience what was happening. Before we knew it, both robots were in the
professors' offices, announcing the meeting: only 4 minutes and 30 seconds to completion! From

Figure 2 A Koala Robot from
the Swiss Federal Institute of

Technology

Conf Conf

Director

Prof

Prof

Occupied! Empty!

15m

Figure 3 Paths of the two Pioneer robots.

SRI International / 1996 AAAI Robot Contest

3

watching the other teams, we knew the nearest time would be close to 10 minutes. Parallelism does work
sometimes...

In the rest of this article, we’ll briefly describe Saphira (the robot control program), the Open
Agent Architecture, and then discuss our implementation of multirobot planning and control using these
tools.

2. Saphira and OAA

2.1. The Saphira Robot Controller
The Saphira architecture [Saffiotti 1995; Konolige 1996] is an integrated sensing and control

system for robotics applications. At the center is the LPS (see Figure 4), a geometric representation of
space around the robot. Because different tasks demand different representations, the LPS is designed to
accommodate various levels of interpretation of sensor information, as well as {\it a priori} information
from sources such as maps. Currently, the major representational technologies are:

• A grid-based representation similar to Moravec and Elfes' occupancy grids [Moravec 1985]
built from the fusion of sensor readings.

• More analytic representations of surface features such as linear surfaces, which interpret sensor
data relative to models of the environment.

• Semantic descriptions of the world, using structures such as corridors or doorways (artifacts).
Artifacts are the product of bottom-up interpretation of sensor readings, or top-down
refinement of map information.

The LPS gives the robot
an awareness of its immediate
environment, and is critical in
the tasks of fusing sensor
information, planning local
movement, and integrating map
information. The perceptual and
control architecture make
constant reference to the local
perceptual space. One can think
of the internal artifacts as
Saphira's beliefs about the world,
and most actions are planned
and executed with respect to
these beliefs.

In Brooks' terms
[Brooks 1986] the organization
is partly vertical and partly
horizontal. The vertical
organization occurs in both
perception (left side) and action
(right side). Various perceptual
routines are responsible for both
adding sensor information to the
LPS and processing it to produce
surface information that can be
used by object recognition and
navigation routines. On the
action side, the lowest level
behaviors look mostly at
occupancy information to do

Figure 4 Saphira system architecture. Perceptual routines are
on the left, action routines on the right. The vertical dimension
gives an indication of the cognitive level of processing, with
high-level behaviors and perceptual routines at the top. Control
is coordinated by the Procedural Reasoning System (PRS-lite),
which instantiates routines for task sequencing and monitoring,
and perceptual coordination.

SRI International / 1996 AAAI Robot Contest

4

obstacle avoidance. The basic building blocks of behaviors are fuzzy rules, which give the robot the
ability to react gracefully to the environment by grading the strength of the reaction (e.g., turn left)
according to the strength of the stimulus (e.g., distance of an obstacle on the right). Navigation routines
make use of map information to guide the robot towards goal locations, e.g., to a corridor junction. At the
same time, registration routines keep track of sensed objects, constantly relating them to internal map
objects to keep the robot accurately positioned with respect to the map. Thus, Saphira is able to accept a
plan, a sequence of waypoints to a final goal, and execute it while keeping the robot localized within the
global map.

2.2. The Open Agent Architecture

When planning our strategy for how to approach this year's robot contest, we decided to take
advantage of our recent integration of Saphira as an agent within the Open Agent Architecture (OAA)
[Cohen 1994]. The OAA is a framework for constructing multiagent systems that has been used by SRI
and clients to construct more than fifteen applications in various domains [Moran 1997, Kameyama
1995]. Applying the OAA to the Office Navigation task in the robot competition could provide the
following advantages:

• Distributed: agents can run on different platforms and operating systems, and can cooperate in
parallel to achieve a task. Some agents could be placed locally on each robot's laptop
controller, while other services could be stored on a more powerful workstation.

• Plug and play: agent communities can be formed by dynamically adding new agents at runtime.
It is as easy to have multiple robots executing tasks as it is to have just one.

• Agent Services: many services and technologies encapsulated by preexisting agents can easily
be added as resources provided by our agent community. Useful agents for the robot domain
would include database agents, mapping agents, agents for text-to-speech, speech
recognition, natural language, all which are directly reusable from other agent-based
applications.

• Multimodal: the agent architecture has been designed with the human user in mind [Cheyer
1995, Moran 1995]. Agents have been developed to allow people to naturally combine,
drawing, speaking, writing with more standard graphical user interface approaches when
addressing the set of distributed agents. In a robot domain, we can monitor progress of robots
on a map, and if required, give them instructions by speaking "You are here facing this
direction" (while drawing an arrow), or "Pick up this object" while indicating a target using
circles, pointing or arrow gestures.

• Mobile: the agent libraries are lightweight enough to allow multiple agents to run on small,
wireless PDAs or laptops, and communication among agents is fast enough to provide
realtime response for the robot domain.

The OAA uses a distributed architecture in which a Facilitator agent is responsible for
scheduling and maintaining the flow of communication among a number of client agents. Agents interact
with each other through an Interagent Communication Language (ICL), a logic-based declarative
language based on an extension of Prolog. The primary job of the Facilitator is to decompose ICL
expressions and route them to agents who have indicated a capability of resolving them. As
communication occurs in an undirected fashion, with agents specifying what information they need, not
how this information is to be obtained, agents can be replaced or added in a "plug-and-play" fashion.

Each agent in the OAA consists of a wrapper encapsulating a knowledge layer written in Prolog,
C, Lisp, Java, Visual Basic or Borland's Delphi. The knowledge layer, in turn, may lie on top of existing
standalone applications, and serves to map the functionality of the underlying application into the ICL. In
the case of the physical robots, we installed an agent interface on top of Saphira, so that information about
the robot’s location, and commands to navigate the robot, were made available to all agents.

The OAA agent library provides common functionality across all agents. Each agent can
respond to or produce requests for information or service, and can install triggers to monitor real-world
conditions. Triggers may make reference to temporal events, to changes in local or remote data values, to
specific agent communication messages or to domain-specific test conditions provided by some agent

SRI International / 1996 AAAI Robot Contest

5

(e.g., a trigger request "When mail arrives from Bob..." will automatically be installed by the Facilitator
on the mail agent, who can perform this verification).

3. Robots as Physical Agents

3.1. System Design
The system we developed is made of a set of independent agents (including robots), able to

communicate in order to perform cooperative tasks. An operator can graphically monitor the whole scene
and interactively control the robots. A top level program, the strategy agent, was designed to synchronize
and control the robots and software agents.

Figure 5 is a diagram of the complete system, including the physical location of all agents. The
facilitator, database agent, map manager agent, strategy agent and speech recognition agent were running
on a UNIX workstation (Sparc20). On the robots, each Saphira agent was running (under Windows 95) on
a laptop computer, each equipped with sound devices and text-to-speech converters. The link between the

robots and the Sparc20 was through wireless Ethernet links.
All agents start running and connect to the facilitator, registering their capabilities so that other

agents can send them requests. This is the essential part of the agent architecture: that agents are able to
access each others’ capabilities in a uniform manner. Many of the interface agents already exist at SRI:
the speech and pen gesture recognition agents, for example. To access these capabilities for the robots, we
have only to describe how the output of the interface functions should invoke robot commands. In
addition, since agents are able to communicate information by asking and responding to queries, it is easy
to set up software agents, like the mapping and strategy agents, to keep track of and control multiple
robots. We’ll briefly describe the capabilities of the agents.

Figure 5 Organization of physical and software agents for the AAAI contest.

SRI International / 1996 AAAI Robot Contest

6

3.1.1. Robot Information and the Database Agent
Each robot agent provides information about the robot state, and accepts commands to control the

robot. The information includes
• Position with respect to the robot’s internal coordinate system
• Robot movement status: stopped, moving forward, turning
• Currently executing behaviors on the robot

An interesting problem is how two agents maintain a consistent coordinate system. Commands that are
robot-relative, e.g., “move forward”, are interpreted with respect to the robot’s internal coordinate system.
Other commands, such as “Go to office EK288,” must be interpreted with respect to a common global
framework. The Database Agent is responsible for maintaining a global map, and distributing this
information to other agents when appropriate. Each physical robot has its own copy of the global map,
but these copies need not be exactly alike. For example, an individual map may be missing information
about an area the robot has no need to visit.

During movement, each robot keeps track of its global position through a combination of dead-
reckoning (how far its wheels have moved) and registration with respect to objects that it senses. It
communicates with the database agent to update its position about once a second, and to report any new
objects that it finds, so they can be incorporated into the global database and made available to other
agents. In this way, the database agent has available information about all of the robot agents that are
currently operating.

3.1.2. The Mapper Agent and Multimodal Input
If a robot becomes lost, it can query the facilitator to help relocalize. Currently, this means

human intervention: the facilitator signals that a particular robot is lost, and asks for a new position for
the robot. The state of each robot is displayed by the map manager agent, or mapper. All currently
known objects in the database, as well as the position of all robots, are constantly updated in a 2-

dimensional window managed
by this agent. Figure 6 shows
the mapper’s view of the
database contents. Corridors,
doors, junctions, and rooms are
objects known to the mapper. A
robot’s position is marked as a
circle with an arrow in it,
showing the robot’s orientation.

To correct the position
of a lost robot, the user can point
to a position on the map where
the robot is currently located, or
simply describe the robot’s
position using speech input.
This is one of the most useful
features of the OAA
architecture, the integration of
multimodal capabilities.

Currently, the system
accepts either voice input or pen gestures. The interpretation of the gestures depends on context. For
instance, when the robot is lost, the user can tell it where it is by drawing a cross (for the location) and an
arrow (to tell the robot where it faces) on the map. Using 2D gestures in the human-computer interaction
holds promise for recreating the paper-pen situation where the user is able to quickly express visual ideas
while she or he is using another modality such as speech. However, to successfully attain a high level of
human-computer cooperation, the interpretation of on-line data must be accurate and fast enough to give
rapid and correct feedback to the user. The gesture recognition engine used in our application is fully
described in [Julia 1995]. There is no constraint on the number of strokes. The latest evaluations gave

Figure 6 The mapping agent’s view of the database.

SRI International / 1996 AAAI Robot Contest

7

better than 96% accuracy, and the recognition was performed in less than half a second on a PC 486/50,
satisfying what we judge is required in terms of quality and speed [Moran 1996]

Given that our map manager program is an agent, the speech recognition agent can also be used
in the system. Therefore, the user can talk to the system in order to control the robots or the display. For
instance, it is possible to say : ``Show me the director's room'' to put the focus on this specific room, or
``robot one, stop'', ``robot one, start'', to control a given robot.

Using the global knowledge stored in the database, this application can also generate plans for
the robots to execute. The program can be asked (by either a user or a distant agent) to compute the
shortest path between two locations, to built the corresponding plan and send it to the robot agent. Plans
are locally executed through Saphira in the robots themselves. Saphira returns a success or failure
message when it finishes executing the plan, so the database agent can keep track of the state of all robots.
In the figure, the plan is indicated by a line drawn from the robot to the goal point, marked by an “X”.

3.1.3. The Strategy Agent
The strategy agent controls the coordinated movements of the robots, by keeping track of the

total world stated and deciding what tasks each robot should perform at any given moment. While it
would be nice to automatically derive multiagent strategies from a description of the task, environment,
and robots, we have not yet built an adequate theory for generating efficient plans. Instead, we built a
strategy for the event by hand, taking into account the various contingencies that could arise. The strategy

was written as a set
of coupled finite-state
machines, one for
each robot agent.
Because the two
Pioneer robots had
similar tasks, their
FS machines were
equivalent. Figure 7
shows the strategies
for these agents.

Note that
the FS strategies are
executed by the
strategy agent, not
the robots. Each
node in the FS graph
represents a task that
the strategy agent
dispatches to a robot,
e.g., navigating to a
particular location.

The robot in
the Director’s room
has a simple task:

just wait until all the other robots have completed their task, then announce the time and place of the
meeting. Transitions between states are triggered by events that come into the database: a robot
successfully completing a task, or some condition becoming known, e.g., whether a conference room is
empty or full. The dark arrows indicate successful completion of a task, while the dotted arrows indicate
failure.

Both traveling robots have the same strategy. After initialization, they go to a conference room
(the strategy agent makes sure they pick different rooms). At any point during navigation, if they get lost,
they signal the strategy agent that the navigation was unsuccessful, and the strategy agent asks the
mapping agent to return a new location for the robot. This happened several times during preliminary

(a) Director’s Office Robot

Conf room empty

(b) Traveling Robot

Figure 7 Finite State Strategy Machines for the two types of robots.

SRI International / 1996 AAAI Robot Contest

8

runs, when one of the robots attempted to navigate through a conference room and got lost. We were able
to tell the robot where it was, and keep going from that point.

Arriving at a conference room, the robot checks if the room is empty. If so, it informs the
database, continues on to the nearest professor’s room. If, while one robot is navigating to its conference
room, the strategy agent learns that the other robot has found an empty one, it immediately starts the first
robot navigating towards the professor’s office. Once at the professor’s office, the robots announce the
expected time of the meeting, based on estimates of how long it will take the last robot to reach its
professor’s office.

4. Conclusion
The AAAI robotics competition has come a long way since its inception in 1992. At this point,

robot navigation in office environments is becoming increasingly reliable, so that we are able to
concentrate on interesting problems of high-level strategy, including efficient management of teams of
robots. The integration of software agent tools has proven to be a great benefit, making human
communication with the robot much more natural and easier to develop. But there still is a need to
develop efficient multiagent planning tools, that is, planners that develop efficient strategies for teams of
robots.

5. The Team

6. Bibliography
Rodney A. Brooks. A layered intelligent control system for a mobile robot. Proceedings of the IEED

Conference on Robotics and Automation (1986).
Adam J. Cheyer and Luc Julia. Multimodal Maps: An Agent-based Approach. International Conference

on Cooperative Multimodal Communication (CMC/95), 24-26 May 1995, Eindhoven, The
Netherlands.

P. R. Cohen, A. J. Cheyer, M. Wang, and S. C. Baeg, "An open agent architecture," in AAAI Spring
Symposium, pp. 1--8, March 1994.

Claire Congdon et al. CARMEL vs. FLAKEY: A comparison of two winners. AI Magazine, 14(1) (1993).
Luc Julia and Claudia Faure. Pattern recognition and beautification for a pen based interface. In

ICDAR'95, pages 58-63, Montreal, Canada, 1995.

Figure 8 The SRI International Team: Adam
Cheyer, Kurt Konolige, Didier Guzzoni (Swiss

Federal Institute of Technology), Luc Julia

SRI International / 1996 AAAI Robot Contest

9

M. Kameyama, G. Kawai, and I. Arima, "A real-time system for summarizing human-human spontaneous
spoken dialogues," in the Proceedings of the Fourth International Conference on Spoken Language
Processing (ICSLP-96), October 1996.

Kurt Konolige et al. The SAPHIRA Architecture: A Design for Autonomy. Journal of Experimental and
Theoretical AI, to appear.

D. B. Moran and A. J. Cheyer, "Intelligent agent-based user interfaces," in Proceedings of International
Workshop on Human Interface Technology 95 (IWHIT'95), (Aizu-Wakamatsu, Fukushima, Japan),
pp. 7--10, The University of Aizu, 12-13 October 1995.

Douglas B. Moran, Adam J. Cheyer, Luc E. Julia, David L. Martin, Sangkyu Park. The Open Agent
Architecture and Its Multimodal User Interface. SRI Tech Note, 1996.

D. B. Moran, A. Cheyer, L. Julia, D. Martin, SK Park, "Multimodal User Interfaces in the Open Agent
Architecture," to appear in IUI97 Conference Proceedings (Orlando), January 1997.

Hans P. Moravec and Alberto E. Elfes. High resolution maps from wide angle sonar. Proceedings of the
1985 IEEE International Conference on Robotics and Automation (1985).

Alessandro Saffiotti, Kurt Konolige, and Enrique Ruspini. A Multivalued Logic Approach to Integrating
Planning and Control. Artificial Intelligence 76 (1-2) (1995).

Kurt Konolige. Operation Manual for the Pioneer Mobile Robot. SRI, 1995
Philip R. Cohen and Adam Cheyer. An Open Agent Architecture. AAAI Spring Symposium, 1994
Adam J. Cheyer and Douglas B. Moran. Software Agents. SRI, 1995

