
Active : A unified platform for building intelligent web interaction assistants

Didier Guzzoni, Charles Baur

Robotic Systems Laboratory

Swiss Federal Institute of Technology, EPFL

CH-1015 Lausanne, Switzerland

didier.guzzoni, charles.baur@epfl.ch

Adam Cheyer

Artificial Intelligence Center

SRI International

Menlo Park, CA 94025

adam.cheyer@sri.com

Abstract

Computer systems keep growing in complexity, process-
ing power and web connectivity. To leverage this rich envi-
ronment and to better assist users, a new type of intelligent
assistant software is required. Building intelligent assis-
tants is a difficult task that requires expertise in many AI
and engineering related fields. We believe that providing a
unified tool and a set of associated methodologies to cre-
ate end-to-end intelligent software will bring many benefits
to this area of research. Our solution, the Active frame-
work, introduces the original concept of Active Ontologies
to model and implement intelligent applications in a sin-
gle and coherent software environment. As an example, this
paper illustrates how Active has been used to create an in-
telligent assistant to help mobile users retrieve online infor-
mation using a multimodal dialog approach.

1 Introduction

As computer systems grow in complexity and access

more local and distributed resources, they are providing rich

applications that cannot be fully leveraged through clas-

sic click-and-execute interaction models. Complex applica-

tions should behave as interactive assistants to whom tasks

and queries are delegated. For instance, when looking on-

line for a local restaurant, instead of navigating through

multiple web sites, it would be easier to simply send an

e-mail to your personal assistant asking, in plain English,

”find me a Chinese restaurant tonight in San Francisco”.

The answer would then come back as an email with a list

of restaurants, or as a question such as ”which area of San

Francisco?”, thus starting a computer-user dialog leading

the user toward his or her goals. A wide class of prob-

lems require the capabilities of an intelligent assistant, a

piece of software that can communicate with humans, un-

derstand the situation by mapping input senses into a model,

act to produce useful behavior (i.e retrieving relevant infor-

mation), and then interact through an appropriate rendering

of communicative content.

The development of a system able to incorporate all of

these capabilities requires programming in different lan-

guages and expertise in many AI-based methods, and hence

is typically beyond the reach of most software developers.

Such an undertaking involves a working with a collection of

heterogeneous software components whose aggregate can

be difficult to integrate, deploy, test and debug. Finally,

combining many different approaches, tools and technolo-

gies limits the overall performance and extensibility of the

system.

What if there were a toolset and an associated method-

ology that lowered the bar for creating intelligent appli-

cations, such that a single Java-savvy software developer

could rapidly model a domain and then apply many of the

best Artificial Intelligence (AI) techniques combined with

web-accessible data and services through a visual, drag-

and-drop interface, easy-to-use wizards, and a familiar pro-

gramming language? This is the vision we are pursuing

through the development of the Active framework.

This paper introduces the Active framework and presents

how it is used to create an intelligent assistant able to dialog

with a user to retrieve information about restaurants, movies

and other points of interests from public data available on

the Internet. Section 2 presents related work, section 3 in-

troduces the Active framework, section 4 shows how Active

is used to implement an intelligent assistant able to extract

information from the Web through a natural language style

user dialogue. Finally, a conclusion presents directions for

our future work.

2 Related Work

Our research focuses on providing a unified tool to build

end-to-end intelligent assistants applications. In the context

of this paper, we compare our work with three fields where

intelligent assistants helping users to retrieve online infor-

mation have been created.



As a first category of related work, agent frameworks

have been used to create personal intelligent assistants for

information retrieval. In this context, the open agent ar-

chitecture [4] introduces the powerful concept of delegated

computing. The Retsina [7] framework is an advanced mul-

tiagent architecture to build distributed intelligent systems,

offering a very effective platform to create independent re-

active behavior. Finally, the Dejima system [5] offers a flex-

ible and programmer-friendly framework for building natu-

ral language interfaces based on networks of interconnected

agents. All of these agent frameworks cover parts of what is

needed to create end-to-end intelligent assistants, whereas

our goal is to create a more generic tool to model service

brokering, reasoning, process execution, modality fusion,

and language processing.

A second category proposes applications built for spe-

cific tasks [2], [3]. These systems are very effective in the

domain for which they have been designed. Consisting of

heterogeneous components, they nevertheless require sub-

stantial development efforts, have limited flexibility and are

not easily adaptable to other fields of application.

Third, given the high potential of mobile intelligent as-

sistants, research and industry partners are defining relevant

standards. For spoken dialog, VoiceXML [6] is used to

specify phone-based speech recognition applications, and

in the mobile space, XHTML+Voice [1] enables voice to

complement visual form interfaces. These techniques and

Active have many similarities. We should nevertheless con-

trast the VoiceXML finite-state automata style of interac-

tion, where you traverse fixed menus, to Active’s more flex-

ible dialog approach, where you can talk naturally about

any part of the domain at any time. In addition, Active is

a generic platform aimed at not only modeling dialog man-

agement, but full end-to-end intelligent applications.

3 Active Framework

Active introduces the original concept of Active Ontolo-
gies as the foundation for creating intelligent applications.

Whereas a conventional ontology is a type of data structure,

defined as a formal representation for domain knowledge

with distinct classes, attributes, and relations among classes,

an Active Ontology is a processing formalism where dis-

tinct processing elements are arranged according to ontol-

ogy notions; it is an execution environment.

Active Ontologies are made up of a relational network

of concepts connected by relationships. Concepts and re-

lationships serve to define both data structures in the do-

main (e.g. a movie has a title, actors, a genre, a rating) as

well as a processing environment using rule sets that per-

form actions within and among concepts. At the core of

Active is a specialized rule engine, where data and events

stored in a fact base are manipulated by rules written using

JavaScript augmented by a light-layer of logic-style unifi-

cation à la Prolog. JavaScript was chosen for its robustness,

clean syntax, popularity in the developer community, and

smooth interoperability with Java. Unification was chosen

for its rich matching capabilities so often used in production

rule systems.

The Active platform is implemented as Java-based soft-

ware suite designed to be extensible and open. It consists of

three components. The Active Editor (figure 1) is a design

environment used by developers to model, deploy and test

Active applications. The Active Server is a scalable run-

time engine that hosts and executes one or more Active pro-

grams. It can either be run as a standalone application or

deployed on a J2EE compliant application server. Finally,

the Active Console permits observation and maintenance of

a running Active Server. To ensure ease of integration and

extensibility, components of the Active platform commu-

nicate through web service (SOAP) interfaces. An Active-

based application consists of a set of loosely-coupled ser-

vices working within one or more Active Ontologies.

On top of the design and implementation described in

the previous section, we have been encoding a number of

AI approaches using Active. Currently, Active can be used

to perform language parsing, multimodal fusion, dialog and

context management, and web services brokering and inte-

gration. Each methodology comes as set of Active Ontolo-

gies and wizards for rapid assembly by developers. Wizards

are part of a plug-in mechanism that enables researchers to

package AI functionality to allow developers to apply and

combine the concepts quickly and easily.

4 Interactive Web Information Retrieval

Based on the current set of Active capabilities, it is pos-

sible to build an end-to-end intelligent application in a sin-

gle unified framework. In our example, we have used Ac-

tive to model and deploy a natural language driven assistant

able to retrieve information about restaurants and movies.

Geographically-relevant content is provided through web-

service interfaces provided by Yahoo and Google.

4.1 Natural Language Processing

To create a language processing application using Active

Ontologies, the first step consists of using the Active Ed-

itor to graphically specify the application domain, sketch-

ing key concepts and relationships (figure 1). In our exam-

ple, the domain consists of commands made out of a verb
and an event. An event, can either be a movie event or a

meal event. Events have a date and more details about their

structure. For instance, a movie has a genre, actors and a

rating. Once the domain has been defined, a layer of lan-

guage processing is applied by associating rule sets directly



Figure 1. Active Editor

to the domain concepts. The unique design of Active allows

programmers to model the domain of an application and the

associated language processing component in a single uni-

fied workspace.

The ontology-like domain definition is a dynamic pro-

cessing environment which reacts to incoming words (cap-

tured by the user interface) to produce a command to be

performed by the system. The domain tree has two types

of processing concepts: sensor concepts (leaves) and node
concepts (non-leaves). Leaf concepts are specialized filters

to sense and rate incoming words about their possible mean-

ing. Typically sensor concepts generate ratings by process-

ing the sequence of incoming words. Words are tested using

regular expression pattern matching or compared against a

known vocabulary set.

Sensors report their results to their node parents. There

are two types of node concepts: gather nodes and selection
nodes. Gather nodes (i.e the movie node) create and rate

an aggregated structured object by combining inputs com-

ing from their children. Selection nodes (i.e the event node)

choose the single best rating coming from their children.

Node concepts are also part of the hierarchy and report rat-

ings to their own parent nodes. Through this bottom up

execution, input tokens are incrementally assembled up the

domain tree to produce a structured command at the root

node.

The Active network of concepts holds the context of

the conversation. Nodes and leaves remember their current

state, allowing the user to use partial sentences, or complete

information when necessary. One can say ”find movies

tonight in Palo Alto” and provide a second utterance later as

”in San Francisco” to change the current location or ”Ital-

ian restaurants” to change the subject but keep the current

location. This type of dialogue is well suited for mobile

communication interactions where bandwidth and user in-

terface complexity are limited.

Relationships play an important role in our approach.

Two types of relationships are used: structural and classifi-
cation. Structural relationships (arrow ended links on figure

1) represent structures by binding elements together, they

relate to a ”has a” ontological notion. For instance, ac-
tor, genre, rating and moviename are members of a movie.

Structural relationships also carry cardinality information

and record whether children nodes are optional or manda-

tory. This information is used by Active to provide the user

with contextual information. For instance, if a user initiates

a dialog with ”find Italian restaurants”, since the address
node is mandatory for movies and restaurants, the user will

be asked to provide an address. Through this mechanism,

the parsing tree not only generates a structured command

but also information to interactively assist the user. Clas-

sification relationships (circle ended links on figure 1) rep-

resent nodes types and how they should be selected, they

relate to a ”is a” ontological notion. For instance, both

movieevent and mealevent are events and one of them will

be picked upon evaluation.

The system is capable of automatically completing user

commands. In our case, the address node has specific rules

to automatically fill the state and city slots if a zip code is

provided. It invokes an external resource (a SOAP web ser-

vice) to try and retrieve city information out of a zip code.

The service is invoked using a specialized Active Ontol-

ogy in charge of dynamically pick and invoke web services

based on criteria such as availability and current execution

context. (See section 4.2)

Changes to language domain definition and processing

are easily and graphically done through the Active Editor.

There is no code to edit, system to shutdown nor program

to recompile. To add a new attribute rating to a movie, a user

uses the Add Leaf wizard to define parameters and rules that

control how leaf nodes rate incoming words. The wizard

automatically generates a new concept and its processing



rules. The next step consists of graphically connecting the

new leaf with the movie node with a structural relationship

and specifying its attributes (mandatory, cardinality). The

final step is to redeploy the modified Active Ontology onto

the Active Server.

4.2 Web Service Brokering

To connect Active based intelligent assistants with their

environment, a set of wizards and specialized Active On-

tologies have been designed to register, dynamically select

and invoke web services. Each registered service belongs

to a well defined service category that specifies input pa-

rameters, output parameters and selection attributes. For

instance, a restaurant information provider category takes a

zip code, a food type and price range as inputs to return a set

of restaurants, each containing restaurant details and an ad-

dress. Service categories are represented with Active con-

cepts and relationships easily and graphically created using

the Active Editor.

Registering service providers for a service category is

interactively done using the Active web service registration
wizard. This wizard takes the name of the service, the cate-

gory where it belongs and a pointer to a valid WSDL1 doc-

ument. Based on the WSDL document, a mapping tool is

provided to match the specific API of the service provider

with the Active-defined category under which the service is

registered. Using this technique, many service providers,

each with their own unique web service interface, can be

registered under the same category. A specialized Active

Ontology has been developed that helps dynamically select,

invoke, and coordinate services by category. This technique

allows callers to delegate the specific instance of service to

call by providing a category of service to invoke, along with

inputs parameters and selection attributes. In our example,

four service categories and providers have been defined:

The Restaurant and Movie service categories are served by

web services from Yahoo and Google respectively. A spe-

cialized service in charge of providing city data and zip

codes is used as a city information provider. Finally, the

user interface category delegates work to different types of

interfaces (e.g. email, PDA, web, voice) to capture user in-

puts and provide them with results.

4.3 Results

The framework described here has been used to imple-

ment an end-to-end intelligent web information retrieval ap-

plication. The system offers two types of user interfaces.

Either a simple Java Swing based console or a mobile phone

hosted application coupled with a speech recognizer allow

users to initiate a dialog to retrieve online information about

1Web Services Description Language

movies and restaurants. With help from industrial partners,

we have begun to evaluate the Active approach for building

intelligent and natural interaction with web information to

mobile users.

5 Conclusion

The Active framework provides a unified tool and ap-

proach for rapidly developing applications incorporating

natural language interpretation, dialog management and ac-

cess to web information. Our future efforts focus on Ac-

tive methodologies and applications: On the methodology

side, we are incorporating Active-based approaches to ac-

tivity recognition and time-constrained process execution.

Our philosophy is to use the Active framework to unify

these two disciplines, allowing a single domain model to

be used when watching the activity of a user, understand-

ing what is being attempted, and then to proactively pro-

viding relevant assistance during execution of the task. Fi-

nally on the application side, we are working with industrial

partners on hardening Active’s main components, improv-

ing the robustness, flexibility, usability, and scalability of

the development tools and runtime platform. Acknowledge-

ments : this research is supported by SRI International and

the NCCR Co-Me of the Swiss National Science Founda-

tion.

References

[1] J. Axelsson, C. Cross, H. Lie, G. McCobb,

T. Raman, and L. Wilson. Xhtml+voice pro-

file 1.2. W3C working draft, W3C, 2004.

http://www.voicexml.org/specs/multimodal/x+v/12/.
[2] P. Berry, K. Myers, T. Uribe, and N. Yorke-Smith. Constraint

solving experience with the calo project. In Proceedings of
CP05 Workshop on Constraint Solving under Change and
Uncertainty, pages 4–8, Sitges, Spain, oct 2005.

[3] M. Budzikowska, J. Chai, S. Govindappa, V. Horvath,

N. Kambhatla, N. Nicolov, and W. Zadrozny. Conversational

sales assistant for online shopping. In HLT ’01: Proceedings
of the first international conference on Human language tech-
nology research, pages 1–2, 2001.

[4] A. Cheyer and D. Martin. The open agent architecture.

Journal of Autonomous Agents and Multi-Agent Systems,

4(1):143–148, March 2001. OAA.
[5] B. Hodjat, H. Franco, H. Bratt, K. Precoda, A. Stolcke,

A. Venkataraman, D. Vergyri, and J. Zheng. Iterative statisti-

cal language model generation for use with an agent-oriented

natural language interface. In 10th International Conference
on Human-Computer Interaction, Crete, June 2003.

[6] J. Larson. Voicexml and the w3c speech interface framework.

IEEE MultiMedia, 10(4):91–93, 2003.
[7] K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa.

The RETSINA MAS infrastructure. Technical Report CMU-

RI-TR-01-05, Robotics Institute Technical Report, Carnegie

Mellon, 2001.


