
ACTIVE, A PLATFORM FOR BUILDING INTELLIGENT SOFTWARE

Didier Guzzoni
Robotics Systems Lab (LSRO2)

Swiss Federal Institute of Technology (EPFL)
CH-1015, Lausanne, Switzerland

email: didier.guzzoni@epfl.ch

Adam Cheyer
Artificial Intelligence Center

SRI International
333 Ravenswood Avenue

Menlo Park, California 94025
adam.cheyer@sri.com

Charles Baur
Robotics Systems Lab (LSRO2)

Swiss Federal Institute of Technology (EPFL)
CH-1015, Lausanne, Switzerland

email: charles.baur@epfl.ch

ABSTRACT
Computer systems keep growing in complexity, processing
power and inter-connectivity. To leverage this rich envi-
ronment and better assist users, a new type of intelligent
assistant software is required. Building intelligent assis-
tants is a difficult task that requires expertise in many AI
related fields including natural language interpretation,di-
alog management, multimodal fusion and brokering of ser-
vices. We believe that providing a unified tool and a set of
associated methodologies to create intelligent software will
bring many benefits to this area of research. Our solution,
the Active framework, introduces the original concept of
Active Ontologies to model and implement intelligent ap-
plications in a single and coherent software environment.
As an example, this paper illustrates how Active has been
used to implement an intelligent assistant to help surgeons
in a computer equipped operating room.

KEY WORDS
Intelligent Systems, Artificial Intelligence, Expert Systems

1 Introduction

Although computer systems have grown in power, access
more networked content and services, computer interfaces
have not changed. Conventional user interfaces with sim-
ple direct manipulation commands are no longer sufficient
to fully leverage such rich and dynamic environment [1].
In this context, modern software systems should behave as
intelligent assistants able to observe and sense their envi-
ronment, for instance human inputs, to analyze a situation
by mapping input senses into a model of what tasks and
events may be happening [2]. They would then understand
and anticipate what the user might need to finally act to
produce relevant and useful behavior.

The development of intelligent assistants requires ex-
pertise in many fields [3]. Perception of human activities
is typically based on multimodal techniques involving in-
puts such as computer vision or speech recognition. Under-

standing the meaning of input signals, is performed by nat-
ural language processors, dialog systems or activity recog-
nition mechanisms. Reaction, decision making strategies
and dialog management are the responsibility of planning
or rule based systems. Finally, as planning unfolds various
actions are taken by the system. Based on their nature and
purpose, intelligent systems act and communicate through
a wide range of modalities. Such modalities need to be
dynamically selected based on the execution context, thus
requiring service and resource orchestration. For instance,
to deliver a message, a pervasive intelligent assistant needs
to pick the right modality (email, instant messenger, SMS)
based on the location and availability of a user. Deploy-
ing intelligent assistants software is a difficult task. Dueto
the variety and complexity of technologies required, intelli-
gent assistants are made of collections of components writ-
ten in many different programming languages. Connecting
various heterogeneous programs, sometimes remotely, re-
quires strong technical knowledge and careful deployment
policies. Testing and debugging distributed heterogeneous
systems is also a complex task. To identify and correct
bugs, events and associated values need to be tracked from
one component to another. Finally, combining many dif-
ferent approaches, tools and technologies limits the overall
performance and extensibility of the system. We believe
that providing a unified tool and methodology to create in-
telligent software will help solve the problems described
above and bring many benefits to this area of research. It
will allow more researchers and engineers to work in the
field by providing a bridge between core AI technologies
and practical engineering.

This paper introduces our implementation of this vi-
sion, the Active framework. The next section is dedicated
to related work on building intelligent assistants. Section 2
outlines the Active original concepts, architecture and cur-
rent implementation. Section 3 presents how the Active
framework is used to implement an intelligent assistant in
the context of neurosurgery. Finally, a conclusion presents
directions of our future work.

1



Figure 1. Language processing Active Ontology in the Ac-
tive Editor

2 Related work

By definition, intelligent interactive systems are based on
various AI techniques. Relevant efforts related to our re-
search can be classified into four categories.

First, the area of interface agents aims at creating in-
telligent user interfaces to assist humans in specific do-
mains [4]. For instance, the Internet is an environment
where intelligent assistants can leverage a vast amount of
information and services to help users with complex tasks
[5]. Scheduling meetings, managing an agenda and com-
municating also represent applications where intelligentas-
sistants are relevant [6]. Intelligent assistants are alsorel-
evant in the domain of heterogeneous smart spaces, instru-
mented rooms able to sense their environment and act upon
events and conditions. Existing smart spaces projects are
designed and optimized for specific domains, implemented
using proprietary frameworks and methods. Our goal is
to provide a more generic intelligent system toolkit, com-
posed of a suite of tools and methodologies to rapidly de-
sign and deploy complex software into smart spaces.

Secondly, our work relates to the field of multi agent
framework research. In this area, heterogeneous existing
AI based components are turned into agents able to form
communities working together with humans to help them
solve problems. In this context, the open agent architec-
ture [7] OAA introduces the powerful concept of delegated
computing. Requests and plans are delegated to a facilita-
tor in charge of orchestrating actions based on declared ca-
pabilities of agents. Thanks to its ease of deployment and
clean design, OAA is used in a large number of projects.
The design unifies in a single formalism the application do-
main knowledge, the messages exchanged among agents,
the capabilities of agents and data driven events. Though
very powerful, OAA does not provide a unified method-
ology to create intelligent systems. It rather provides a
framework where heterogeneous elements, written in many
programming languages, are turned into OAA compatible
components to form communities of agents. Similarly, the
Retsina [8] framework is an advanced multi agent architec-
ture to build distributed intelligent systems. It is based on
four classes of agents. Interface agents that interact with

users, task agents that carry out plans, information retrieval
agents and middle agents to help match agents that request
services with agents that provide services. Though very ef-
ficient in producing independent reactive behavior, Restina
would not be suited as a unified methodology to implement
basic AI components such as natural language processors
or multimodal fusion engines. In addition the design of
Retsina uses different formalisms for communication, do-
main representation and reasoning technique. In contrast,
our aim is to use the same formalism for all intelligent as-
sistant aspects.

Intelligent behavior can also be modeled with goal
oriented programming systems. BDI based systems [9]
provide goal oriented reactive planning in dynamic and par-
tially known environments. Beliefs represent the model
and state of the world and a plan library defines how to
achieve goals. Intentions are activated plans elected and
picked from the library to reach some goals. The list of
intentions is constantly evaluated with beliefs, thus provid-
ing a reactive behavior to the system. Many BDI imple-
mentations [10] [11] are available and have proved their
relevance in the field of intelligent systems. BDI based en-
gines would be well suited to be the core of our research,
where dynamic decisions need to be made to respond to an
event. Their design is nevertheless constrained to dynamic
planning and would not be suited to implement tasks such
as natural language processing or modality fusion.

Finally, rule based expert system engines such as
Clips [12] or SOAR [13] have been designed to model in-
telligent applications. Such systems use a knowledge base,
an inference engine and a set of rules to represent the be-
havior of a software application. Both Clips and SOAR
are robust, proven and effective implementations of general
purpose rule based systems. Although based on a similar
rule based principles, the aim of the Active framework is
to not only provide a tool, but also a set of methodologies
and extensions to encapsulate the set of AI techniques re-
quired to build intelligent assistants. To support its own set
of specific constraints, such as time based conditions, the
current implementation of Active uses its own rule engine.
Integrating Clips or SOAR into future versions of Active is
under evaluation.

3 The Active framework

3.1 Conceptual overview

Our solution, the Active framework provides a unified tool
and methodology to ease the development of intelligent
software. Active is based on the original concept of Ac-
tive Ontologies, used to model and implement applications.
A conventional ontology is defined as a formal representa-
tion for domain knowledge, with distinct classes, attributes,
and relations among classes; it is a data structure. An Ac-
tive Ontology is a processing formalism where distinct pro-
cessing elements are arranged according to ontology no-
tions; it is an execution environment. An Active Ontology



is made up of interconnected processing elements called
Concepts, graphically arranged to represent the domain ob-
jects, events, actions, and processes that make up an ap-
plication. Concepts communicate with each other through
channels, passing state information, hypotheses, and re-
quests. Concepts reason about incoming channel mes-
sages, to determine how the information should be com-
bined and acted upon. As new inputs arrive in the system,
Sensor Concepts begin spreading this information through-
out the network using a time-sampling method for manag-
ing high-frequency changes in a scalable fashion. Sensor
observations are combined with current context, merged
with other sensed information, and when enough evidence
is presented to infer intent, action requests are triggered
and flow through process structures modeled in the net-
work. Throughout this progression,meta-concepts can rea-
son about the overall activity flow, about time constraints,
and so forth. Reasoning is modeled as rule sets attached
to Concepts across an Active Ontology. Active hosts a fact
base, which contains elements to represent the current state
of an Active program. Processing cycles evaluate rules con-
ditions and, if they match the current state of the fact base,
associated actions are executed. This approach allows pro-
grammers to graphically define and application domain as
an ontology and turn it into an execution environment by
laying processing elements over it. Based on this prin-
ciple, Active techniques have been developed to perform
natural language interpretation, dialog management, multi-
modal fusion and brokering of services in a single unified
framework.

3.2 Technology

The Active framework implementation is a Java based soft-
ware suite designed to be extensible and open. It consists
of three components, the Active Editor (figure 1), the Ac-
tive Server and the Active Console. The Active Editor is
a design environment used by programmers to model, de-
ploy and test Active applications. It features a graph editor
to model Active Ontologies, an integrated code text edi-
tor to work on processing rules and a debugging section.
Connected to a running Active Server, the debugger is used
to trigger the execution of deployed Active Ontologies and
collect real time events from the Active Server for visual-
ization and analysis. The Active Server is a scalable run-
time engine that hosts and executes one or more Active pro-
grams. It can either be running as a standalone application
or deployed on a J2EE compliant application server. The
Active server exposes a SOAP API allowing external sen-
sors component to report their results by remotely insert-
ing facts into fact stores, thus triggering a evaluation cycle
of Active Ontologies. Finally, the Active Console permits
observation and maintenance of a running Active Server.
To ensure ease of integration and extensibility, components
of the Active platform communicate through web service
(SOAP) interfaces. For both the Active Editor and Ac-
tive Server, an open (SDK) plug-in mechanism enables re-

searchers to package AI functionality to allow developers
to apply and combine the concepts quickly and easily. A
set of Active extensions is available for language parsing,
multimodal fusion, dialog management and web services
integration.

4 Use case : an intelligent assistant for the
operating room

Based on Active technology, an intelligent operating as-
sistant for neurosurgery has been implemented and is cur-
rently evaluated by surgeons. The system consists of a mul-
timodal interface allowing surgeons to retrieve and manip-
ulate pre-operative data (a set of CT scans and a recon-
structed 3D model of the area to operate). In addition, live
images coming from a powered image source (endoscope
or microscope) are displayed along with vital patient infor-
mation. Since computers and their peripherals are difficult
to sterilize, they cannot be directly used by surgeons when
operating. Therefore, interaction with the intelligent assis-
tant takes place through a combination of hand gesture us-
ing a contact-less mouse [14] and voice recognition. Com-
mands are issued to control a powered endoscope, navigate
through pre-operative data and choose which information
to show on the main display.

4.1 Active based application design

The surgery assistant application consists of a set of Active
Ontologies deployed and executed on the Active Server and
a community of sensors and actuators integrated as loosely
coupled services (figure 2). Sensors (user interface, speech
recognizer, stereo camera or any physical measuring probe)
report events captured in the environment to the Active
Server.

In response to incoming events, an Active Ontology in
charge of natural language interpretation attempts to con-
struct structured commands. This Active Ontology consists
of concepts and relationships that define the domain of the
application (figure 1). A tree like structure models valid
commands. A command is made of asubject, a comple-
ment and averb. A complement can either express a di-
rection (up, down, left, right) or zoom (in, out) for camera
controls or express control of an ordered sequence of items
(last, first, next, previous) for image navigation. Once the
domain has been defined with concepts and relationships,
a layer of language processing is applied on it by inserting
rule sets directly to the domain concepts. Active unique
design allows programmers to model the domain of an ap-
plication along with associated language processing com-
ponents in a single unified workspace.

Once created, the domain definition tree is enhanced
with two types of processing concepts: sensor concepts
(leaves) and node concepts (non leaves). Sensor concepts
are specialized filters to sense and rate incoming events
about their possible meaning. A rating defines the degree of



confidence about the possible meaning of the correspond-
ing sensed signal. Typically sensor concepts generate rat-
ings by testing events ordering and if their values belong
to a known vocabulary set. Sensors use communication
channels to report their results to their parents, the node
concepts. There are two types of node concepts: gathering
nodes and selection nodes. Gathering nodes, thecommand
node in our example, create and rate a structured object
made out of information coming from all their children. Se-
lection nodes, thecomplement node of our example, pick
the single best rating coming from their children. Node
concepts are also part of the hierarchy and report ratings
and decisions to their own parent nodes. Through this bot-
tom up execution, input signals are incrementally assem-
bled up the domain tree to produce a structured command
at the root node.

For instance, when the surgeon says: ”endoscope
zoom in“, the sequence of words ”endoscope“, ”zoom“,
”in“ will be submitted to the network. Each word is
rated by the sensors of the network. ”endoscope“ will
be rated as asubject, ”move“ as averb and ”in“ as a
zoom complement. The nodecomplement selects the best
rated value coming from its children and reports it to its par-
ent. At the top of the network, the nodecommand assem-
bles values from its children to create the final command.
Once a structured command has been generated at the lan-
guage processing stage, it is passed to another Active On-
tology in charge of validation and resolution. The incoming
command is deconstructed, following a top down scheme,
to verify that each element is valid and semantically cor-
rect. At this stage, specialized rules generate suggestions,
to inform the user about missing or incoherent elements.
Rules can also use to context (user preferences, current di-
alog) to automatically correct or fill out missing fields.

To ease future use of this method, the technique has
been encapsulated into a set of Active extensions. The Ac-
tive Editor provides a set of wizards to help define the lan-
guage processing attributes of concepts. At the end of a se-
quence of simple steps, the wizard automatically generates
processing rules and attaches them to associated concepts.

The dialog context between the user and Active is
maintained by the state of concepts. After processing the
command ”endoscope zoom in“, concepts will generate rat-
ings and remember them to create the current dialog con-
text. To further control the zoom factor the user can sim-
ply say ”in“ or ”out“. Based on user preferences and the
type of application, the dialog context can be reset when
the subject changes or on a timeout basis when the user is
not active for a given period of time. Based on surgeons
feedback, the most appropriate technique consists of clear-
ing the context whenever the subject changes. Time based
techniques are more effective in information browsing en-
vironment such as interactive kiosks, but turn out to add
unnecessary stress in a more critical situation such as an
operating room.

Active is a testbed for multimodal applications where
multiple sensors can contribute to make up a command.

Gesture Recognizer

Speech Synthetizer

Speech Recognizer

Communicate
Act

Sense
Observe

Undersand
Anticipate

Active Server

U
ser In

terface

Computer Vision

Robotic tool holder

Patient vital signs

Figure 2. Active based surgery room prototype

Since sensors report events to the Active Server through
a web service interface, they can be heterogeneous, dis-
tributed and easily added. For instance, a surgeon can
say ”move endoscope“ while gesturing to the left. The
speech recognizer will contribute by reporting all recog-
nized words and the gesture recognizer will report a gesture
going from right to left. The language processing Active
Ontology, using its bottom up network of concepts, will
assemble these fragments to generate a full command.

Complete and valid commands are processed by a fi-
nal stage, implemented as a separate Active Ontology, to
perform actions through dynamic brokering of services.
Since Active applications interact with their environment
through a set of loosely coupled services, actuators are not
known at design time and have to be dynamically chosen at
runtime based on their availability, the environment context
and user preferences. For instance, if an important message
has to be delivered to a surgeon, the media could be email
or instant messaging if the user is at the computer, an alarm
on a pager or multimedia message on a pocket computer for
hospital personnel out of their office. This concept of dele-
gation computing [7] is implemented by a specialized Ac-
tive Ontology. Registered service providers are rated and
picked at runtime by a delegation broker. As an example,
if a message has to be communicated, the delegation Ac-
tive Ontology will analyze the current situation to decide
which service provider is best suited to do the job. Selec-
tion is based on many factors such as dialog context, user
preferences, location, reliability or cost. Service integra-
tion through a delegation mechanism provides a powerful
plug and play approach where components can be dynami-
cally integrated.

4.2 Results

The Active based surgery assistant is reviewed by surgeons
and medical equipment suppliers on a regular basis. For the
first time, a natural and intuitive computer interface enables
surgeons to interact with computers as though they were an



active member of the team. In addition, a service based
architecture federates computer based systems present in
the operating room to centralize all interactions through
the same set of multimodal channels. It saves surgeons
from learning about different system designs and limits the
number of user interfaces they have to deal with. Since
the system is built as a community of distributed services,
multiple surgeons can collaborate from different locations
by dynamically connecting their own user interfaces on a
shared network.

5 Summary and future work

The Active framework provides a unified tool and approach
for rapidly developing applications incorporating natural
language interpretation, dialog management, multimodal
fusion and brokering of web services. As such, Active aims
to unleash the potential of intelligent software by making
required technologies more easily accessible. The Active
framework implementation is a Java based software suite
designed to be extensible and open. The Active Editor is
a design environment used by developers to model, deploy
and test Active applications. The Active Server is a scalable
runtime engine that hosts and executes one or more Active
applications. A plug-in mechanism enables researchers to
package AI functionality to allow developers to apply and
combine the concepts quickly and easily. An Active appli-
cation consists of a set of Active Ontologies deployed and
executed on the Active Server and a community of sensors
and actuators integrated as loosely coupled services. Ac-
tive is used in various domains, such as intelligent spaces
and ubiquitous mobile communications. In the medical
field where computers are part of the standard equipment
of surgery rooms, an Active based intelligent operating en-
vironment has been implemented and is under evaluation.
This software assistant enables surgeons to interact with
computer systems as if they were an active member of the
team.

More work remains to be done on both implementa-
tion and methodology aspects of Active. In the medical
field, to perform realistic clinical tests, we are working on
integrating real operating room components with the Ac-
tive framework. As a generic software tool, we plan on
further develop Active based systems on different fields of
applications such as mobile and ubiquitous computing. On
the methodology side, Active has proven techniques for
language processing, dialog management and service or-
chestration. Further investigations need to be done on ac-
tivity recognition and plan execution. Our philosophy is to
use the Active framework to unify these two disciplines to
perform them in a unique environment. Active could then
look at the activity of a user, understand what is being at-
tempted to proactively provide relevant assistance or even
take over the execution of the task.

6 Acknowledgements

This research has been supported by SRI International and
the NCCR Co-Me of the Swiss National Science Founda-
tion.

References

[1] Maes, P.: Agents that reduce work and information
overload. In: Communications of the ACM. Vol-
ume 38. (1995)

[2] Sowa, J.F.: Architecures for intelligent systems. Spe-
cial Issue on Artificial Intelligence of the IBM Sys-
tems Journal41(3) (2002) 331–349

[3] Winikoff, M., Padgham, L., Harland, J.: Simplifying
the development of intelligent agents. In: Australian
Joint Conference on Artificial Intelligence. (2001)
557–568

[4] Middleton, S.E.: Interface agents: A review of the
field (2002)

[5] Morris, J., Ree, P., Maes, P.: Sardine: dynamic seller
strategies in an auction marketplace. In: ACM Con-
ference on Electronic Commerce. (2000) 128–134

[6] Berry, P., Myers, K., Uribe, T., Yorke-Smith, N.:
Constraint solving experience with the calo project.
In: Proceedings of CP05 Workshop on Constraint
Solving under Change and Uncertainty, Sitges, Spain
(2005) 4–8

[7] Cheyer, A., Martin, D.: The open agent architecture.
Journal of Autonomous Agents and Multi-Agent Sys-
tems4(1) (2001) 143–148 OAA.

[8] Sycara, K., Decker, K., Pannu, A.S., Williamson, M.,
Zeng, D.: Distributed intelligent agents. IEEE Expert
(1996)

[9] Rao, A.S., Georgeff, M.P.: BDI-agents: from theory
to practice. In: Proceedings of the First Intl. Confer-
ence on Multiagent Systems, San Francisco (1995)

[10] Myers, K.L.: A procedural knowledge approach to
task-level control. In Drabble, B., ed.: AIPS-96,
AAAI Press (1996) 158–165

[11] Norling, E., Ritter, F.E.: Embodying the JACK agent
architecture. In: Australian Joint Conference on Arti-
ficial Intelligence. (2001) 368–377

[12] Giarratano, J.C.: Clips 6.20 user’s guide (2002)

[13] Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar:
an architecture for general intelligence. Artif. Intell.
33(1) (1987) 1–64

[14] Graetzel, C., Fong, T.W., Grange, S., Baur, C.: A
non-contact mouse for surgeon-computer interaction.
Technology and Health Care12(3) (2004) 245–257


