
ACTIVE, A TOOL FOR BUILDING INTELLIGENT USER INTERFACES
Didier Guzzoni and Charles Baur
Robotics Systems Lab (LSRO 2)

EPFL
Lausanne, Switzerland

Adam Cheyer
Artificial Intelligence Center

SRI International
Menlo Park, California, USA

ABSTRACT
Computers have become affordable, small, omnipresent
and are often connected to the Internet. However, despite
the availability of such rich environment, user interfaces
have not been adapted to fully leverage its potential. To
help with complex tasks, a new type of software is needed
to provide more user-centric systems that act as ”intelligent
assistants”, able to interact naturally with human users and
with the information environment. Building an intelligent
assistant is a difficult task that requires expertise in many
fields ranging from artificial intelligence to core software
and hardware engineering. We believe that providing a
unified tool and methodology to create intelligent software
will bring many benefits to this area of research. Our so-
lution, the Active framework, combines an innovative pro-
duction rule engine with communities of services to model
and implement intelligent assistants. In the medical field,
our approach is used to build an operating room assistant.
Using natural modalities such as speech recognition and
hand gestures, it enables surgeons to interact with computer
based equipments of the operating room as if they were ac-
tive members of the team. In a broader context, Active aims
to ease the development of intelligent software by making
required technologies more accessible.

KEY WORDS
Man-Machine Interfaces, Intelligent Systems, Cognitive
Processes, Medicine

1 INTRODUCTION

A growing number of applications require intelligent user
interfaces to whom tasks can be delegated in a natural
and interactive manner [1]. Computers should be seen
as personal assistants rather than rigid tools controlled
through the basic ”click-and-do” paradigm. To fully lever-
age the power of today’s modern computing environment
where processing power is affordable, omnipresent (mo-
bile devices, cars, appliances) and always connected (Wifi,
WiMAX) computers should be told ”what to do” instead of
”how to do”. We define an ”intelligent assistant” as a soft-
ware system able to observe and sense its environment (in-
cluding human communications), to analyze a situation by
mapping input senses into a model of what tasks and events
may be happening, and then to understand and anticipate
what actions will produce relevant and useful behavior.

As an example, let’s assume someone is looking for
a flight from Boston to San Francisco. Instead of going
over multiple web sites to get quotes, one should be able to
express the request in a more natural way by, for instance,
simply sending an email to an intelligent assistant saying
”find me a flight from Boston to SFO next Thursday”. The
system would then send an email back to the user with a
list of possible flights or a request for more details. Such
a thread of email messages offers a natural dialog to a user
interacting with an intelligent assistant.

Intelligent user interfaces are difficult to design, im-
plement and deploy. Such software systems require exper-
tise in many AI related fields [2]. Perception of human ac-
tivities is typically based on techniques such as computer
vision or speech recognition. Understanding the meaning
of input signals is performed by language processing, dia-
log systems or activity recognition mechanisms. Reaction,
decision making strategies and complex task execution are
the responsibility of planning systems. Finally, as planning
unfolds various actions are taken by the system. Based on
their nature and purpose, intelligent systems act through a
wide range of modalities. They communicate with humans,
gather information or physically change their environment.
On the implementation side, due to the variety and com-
plexity of technologies required, intelligent assistants are
made of a collection of components written in many differ-
ent programming languages. Connecting various heteroge-
neous programs, sometimes remotely, requires strong tech-
nical knowledge and careful deployment policies. Testing
and debugging distributed heterogeneous systems is also
a complex task. To identify and correct bugs, events and
associated values need to be tracked from one component
to another. Finally, combining many different approaches,
tools and technologies limits the overall performance and
extensibility of the system.

The goal of our research is to provide a unified tool
and associated methodologies to ease the development of
intelligent user interfaces. Our solution consists of a ser-
vice oriented architecture where services are orchestrated
by the Active system, an innovative production rule based
framework. Our approach brings AI technologies to non-
expert programmers, allowing them to leverage the best
of AI techniques by encapsulating their underlying com-
plexity. Programmers can model all aspects of intelligent
assistant interfaces (language processing, plan execution
and modality fusion) in a unified and programmer friendly



framework.
This paper presents how our approach is used to cre-

ate a multimodal assistant designed to help surgeons in the
operating room. The next section is dedicated to related
work. Then, we outline the Active framework, its original
concepts, architecture and current implementation. Next,
we present in more details how our framework is used to
design and implement an intelligent assistant for the oper-
ating room. Finally, a conclusion presents directions of our
future work.

2 RELATED WORK

In the field of multimodal user interface framework, the
open agent architecture [3] (OAA) introduces the power-
ful concept of delegated computing. Similarly to our ap-
proach, OAA systems consist of communities of services
whose actions are combined to execute complex plans. Re-
quests and plans are delegated to a facilitator in charge
of orchestrating actions based on declared capabilities of
agents. Thanks to its ease of deployment and clean de-
sign, OAA is used in a large number of projects. The de-
sign unifies in a single formalism the application domain
knowledge, the messages exchanged among agents, the ca-
pabilities of agents and data driven events. Though very
powerful, OAA does not provide a unified methodology to
create intelligent systems. It rather provides a framework
where heterogeneous elements, written in many program-
ming languages, are turned into OAA compatible agents to
form intelligent communities.

The MULTIPLATFORM testbed [4] is a generic ser-
vice oriented software framework to build dialog systems.
It has been used in numerous applications ranging from
interactive kiosks to mobile assistants. Although is has
shown robustness and effectiveness, the system lacks some
of the flexibility required to support dynamic planning and
runtime reconfiguration. All data structures and messages
exchanged among components are defined as XML docu-
ments at design time, and cannot be easily changed on the
fly. Adding new types of services requires the application
to be taken offline and redesigned, whereas we are trying
to provide a more dynamic environment where services and
service types can easily be added to the system.

The CALO project [5] aims at designing and deploy-
ing a personal assistant that learns and helps users with
complex tasks. CALO is an extremely heterogeneous sys-
tem, involving components written in eleven different pro-
gramming languages. CALO meets the requirements for
which it was designed but is not a cognitive architecture
tool to be used by non expert programmers. Similarly, the
RADAR project [6] is an intelligent assistant designed to
help users deal with crisis management. Its flexibility and
sound design have allowed the system to be effectively de-
ployed and tested by users. However, its complexity pre-
vents programmers from rapidly getting up to speed with-
out learning about implementation details and AI concepts.

Active ConsoleActive Editor

Active Ontology

Data (fact) store

Active Ontology
Active Ontology

Active Server

Communication Extension

Edit
Deploy
Debug

Inspect
Monitor

Service 1

Service 2 Service 3

Service NService 3

Figure 1. Active application design

3 ACTIVE FRAMEWORK

The Active system is a unified framework designed to build
intelligent systems. Its goal is to lower the bar to allow
more programmers to build complex intelligent interface
systems featuring multimodal input, language processing,
plan execution and multimodal output.

3.1 Active Ontologies

Active is based on the original concept of Active Ontolo-
gies, used to model and implement applications. A con-
ventional ontology is defined as a formal representation for
domain knowledge, with distinct concepts, attributes, and
relations among classes; it is a data structure. An Active
ontology is an enhanced ontology where processing ele-
ments are arranged according to ontology notions; the on-
tology becomes an execution environment.

An Active Ontology consists of interconnected pro-
cessing elements called concepts, graphically arranged to
represent the domain objects, events, actions, and processes
that make up an application. The logic of an Active applica-
tion is represented by rule sets attached to concepts. Rule
sets are collections of rules where each rule has a condi-
tion and an action. Conditions and actions are expressed
in JavaScript augmented by a light-layer of firstorder logic.
JavaScript was chosen for its robustness, clean syntax, pop-
ularity in the developer community, and smooth interoper-
ability with Java. First-order logic was chosen for its rich
matching capabilities (unification) so often used in produc-
tion rule systems.

In addition, each Active ontology is given a data store,
used to persist firstorder logic facts that represent the state
and variables of the current processing. When the contents



of the fact store changes, an evaluation cycle is triggered
and conditions are evaluated. Fact stores can be shared
to exchange information and perform actions across Ac-
tive Ontologies. Finally, stores can be accessed by external
programs, so that new pieces of information can be added
from the outside world to trigger further processing.

An Active-based application (see figure 1) consists
of a set of loosely coupled services working with one or
more Active Ontologies. Using loosely coupled services
eases integration of sensors (e.g. speech recognition, vi-
sion systems, mobile or remote user interfaces), effectors
(e.g. speech synthesis, user interfaces, robotics) and pro-
cessing services (e.g. remote data sources, processing com-
ponents).

3.2 Implementation

The current implementation of Active consists of three
components. First, the Active Editor (see figure 2) is a de-
sign environment used by developers to model, deploy and
test Active applications. Within the Active Editor, devel-
opers can graphically create and relate concept nodes, se-
lect Wizards that automatically generate rule sets within a
concept to perform actions such as interpretation of natural
language, modeling of executable processes, or connecting
to third-party web services and finally test or modify the
rule sets as needed. Second, the Active Server is a scalable
runtime engine that hosts and executes one or more Active
programs. It can either be run as a standalone application
or deployed on a J2EE compliant application server. The
Active server exposes SOAP or RMI apis allowing exter-
nal sensors component to report their results by remotely
inserting facts into fact stores, thus triggering the evalua-
tion of concept rules within the deployed Active Ontolo-
gies. Finally, the Active Console permits observation and
maintenance of a running Active Server.

The Active framework implementation is a Java-
based software suite designed to be extensible and open.
For both the Active Editor and Active Server, plug-in mech-
anisms enable researchers to package AI functionality to al-
low developers to apply and combine the concepts quickly
and easily. A growing set of Active extensions is available
for language parsing, multimodal fusion, dialog and con-
text management, and web services integration. To ensure
ease of integration and extensibility, all three components
of the Active platform communicates through web service
(SOAP) or RMI interfaces.

3.3 Methodologies

Based on the design and implementation described above,
a set of Active methodologies has been created to perform
language processing, dynamic service brokering and pro-
cess modeling.

Figure 2. Active Editor

3.3.1 Language processing

The goal of a language processing component is to gather
input utterances, understand their meaning, and to finally
generate a command to be delegated for execution. To per-
form language processing, Active uses a pattern recogni-
tion technique, where ontology concepts are used to model
the application domain and enhanced with a light layer of
language (words and patterns). This approach is often very
natural for developers, produces good results and the do-
main model is portable across languages.

To implement the pattern recognition approach for a
domain, the first step consists of using concepts and rela-
tionships to specify the model of the application (see fig-
ure 2). A tree like structure is built, defining the struc-
ture of a valid command. In our example, a command is
made of a subject, a complement and a verb. The comple-
ment can either express a direction (up, down, left, right)
or zoom (in, out) for camera controls, express sequential
control (last, first, next, previous) for image navigation or a
position (top, bottom, left, right, front, rear) for 3D model
manipulation.

Once the domain has been defined using concepts and
relationships, a layer of language processing is applied, by
associating rule sets directly on the domain concepts. Ac-
tive’s unique design allows programmers to model the do-
main of an application and the associated language process-
ing component in a single unified workspace.

The domain tree has two types of processing con-
cepts: sensor concepts (leaves) and node concepts (non-



leaves). Sensor concepts are specialized filters to sense
and rate incoming events about their possible meaning. A
rating defines the degree of confidence about the possible
meaning of the corresponding sensed signal. Typically sen-
sor concepts generate ratings by testing the order of incom-
ing events or checking their values using regular expres-
sion pattern matching or a known vocabulary set. Sensors
use communication channels to report their results to their
parents, the node concepts. There are two types of node
concepts: gathering nodes and selection nodes. Gathering
nodes, e.g. the command node in our example, create and
rate a structured object made of ratings coming from their
children. Selection nodes, e.g. the complement node in
our example, pick the single best rating coming from their
children. Node concepts are also part of the hierarchy and
report ratings to their own parent nodes. Through this bot-
tom up execution, input signals are incrementally assem-
bled up the domain tree to produce a structured command
at the root node. This method has been encapsulated into a
set of Active extensions and wizards.

3.3.2 Dynamic service brokering

At the heart of many multi-agent systems, such as SRI’s
Open Agent Architecture (OAA) [3] or CMU’s Retsina [7],
is a dynamic service broker which reasons about how to
deal with situations where multiple service providers ex-
pose the same function. In such systems, a brokering mech-
anism is used to select relevant providers and gather their
results on behalf of the caller. Service providers are chosen
on the fly based on a service class and a set of selection at-
tributes, which typically include properties such as service
availability, user preferences, quality of service, or cost.

To implement this technique, we have created a spe-
cialized Active Ontology to work as a service registry and
dynamic service broker. Service providers register their ca-
pabilities and attributes by asserting a set of fact into the
associated fact store. This data set represents a simple ser-
vice registry where providers can register, be discovered
and invoked.

At runtime, the broker will use this information to se-
lect which providers can be called based on the caller’s
attributes and current context. Once a list of suitable
providers have been selected, the broker invokes them us-
ing one of two techniques. First, a sequential approach,
where providers are called in sequence, until one of them
successfully responds. This would for instance be used to
send a notification message to a user. If several service
providers can send email, the message should be delivered
only once. Secondly, a parallel technique where providers
are concurrently invoked, their responses being aggregated
into a result set. This technique is used when a caller needs
to retrieve information from multiple sources.

Stereo Vision

Patient vital signs

Speech Recognizer

Gesture Recognizer

Speech Synthetizer

Communicate
Act

Anticipate
Undersand

Observe
Sense

Active Server

Robotic tool holderUser Interface

Figure 3. Active based surgery room prototype

3.3.3 Process modeling and execution

An Active methodology to model processes has been de-
signed and implemented. Using concepts and rules it is
possible to model generic processes, to use the Active envi-
ronment as a business process engine. Such processes have
been designed to model dialogs and sequences of actions to
be undertaken by Active. As other Active methodologies,
this technique has been encapsulated into a set of interac-
tive Active Editor wizards allowing programmers to model
complex processes without writing any Active code.

The execution state of processes and their instance
variables are persisted as Active facts in Active data stores.
A collection of functional building blocks are available
to model complex processes. Start elements define entry
points that will trigger the execution of a process. End el-
ements define the end of a process execution. They clean
up all the process instance related information. Fork and
join elements allow to model branches (sub processes to be
executed in parallel) and join them later. Execution nodes
contain Javascript code to be executed when the interpreted
of the process reaches a specific stage. Wait nodes have
a condition based on the content of the Active fact store.
Whenever the condition is valid, the flow will resume its
activity. A timeout can be specified to undertake action
when an awaited event does not occur.

4 THE INTELLIGENT OPERATING
ROOM

Modern operating rooms are equipped with various com-
puter systems, allowing surgeons to perform complex oper-
ations and develop new techniques to improve results, limit



the trauma of surgery on patients and shorten hospital stays.
The operating room has obvious and strict constrains about
space and sterilization, thus preventing the use of classic
keyboards and mice. In addition, surgeons and their staff
wear cumbersome outfits and always need to focus on the
operating field, therefore they cannot afford to switch atten-
tion or drop their tools to interact with computer systems.
According to surgeons, computers will be more effective
and easily accepted if they can be seen as any other member
of the team. This implies that computer-human interaction
should be as natural as possible.

Our approach to implement an intelligent assistant for
the operating room is to create a service oriented system
(see figure 3) featuring a community of independent ser-
vices orchestrated by a core application implemented as a
set of Active Ontologies. The system, implemented as a
multimodal interface, allows surgeons to retrieve and ma-
nipulate pre-operative data (a set of CT scans and a recon-
structed 3D model of the area to operate). In addition, live
images coming from a powered image source (endoscope
or microscope) are displayed along with vital patient infor-
mation. Surgeons and their staff interact with the system by
a combination of hand gesture using a contact-less mouse
[12] and voice recognition. Commands are issued to con-
trol the powered endoscope, navigate through pre-operative
data and choose which information to show on the main
display. Following sub sections describe the application
components in more details.

4.1 Core Application

The core of the application is based on three Active On-
tologies running on the Active server. They implement
the behavior of the intelligent interface: language process-
ing, plan execution and interaction with the environment.
A community of loosely coupled services makes up the
rest of the application by sensing the environment (speech
and gesture recognizers, stereo camera, user interface) and
acting (user interface, speech synthesis and optionally a
robotic arm).

When a sensor gathers a piece of information from the
environment, it reports it by asserting a fact into the data
store of the language parsing Active Ontology. This event
triggers the evaluation of running Active Ontologies that
will generate the most appropriate action to perform what
the user asked. Note that the system is not only aware of
the surgeon’s activities, but also gathers information about
the condition of the patient and the status of various de-
vices running in the operating room. It aggregates this in-
formation in its global behavior, to for instance, warn the
surgeon when the patient’s condition changes. As more
components get integrated, the Active based surgery assis-
tant has the potential to transform the operating room into
a smart intelligent space.

4.2 User interface

The main user interface is used by surgeons to access the
information they need to visualize through four main ar-
eas. Live images delivered by the endoscope, pre-operative
images and 3D model representing specific patient’s data
and general information about the general condition of the
patient.

Even if the user interface is the only component with
which the user is interacting, it is only the tip of the iceberg.
The user interface is a service in the community working
for the user. In addition, it is possible to start a second
user interface to join the community and, with no signifi-
cant development effort, allow two surgeons to collaborate
by sharing the same environment.

4.3 Gesture recognition

Since surgeons cannot use any mouse nor keyboard while
operating, we provide them with a virtual mouse pointer by
tracking their hands motion. Based on the motion informa-
tion, surgeons can either use their hand directly as a mouse
or perform simple gestures to perform actions.

Two motion capture techniques have been integrated
into the system. First, a stereo camera [8] is used to track
the surgeon’s hands and feed the gesture recognizer. This
technique is non intrusive, easy to install but is rather sen-
sitive to light conditions and its accuracy is limited. Sec-
ondly, we used a method where markers are mounted on
the surgeon’s tool and being tracked, using pulsed infrared
light, by a base station that computes their location in space
[9]. This technique is more intrusive (instruments have
to be equipped with markers) but provides a better preci-
sion and is less sensitive to light conditions. Thanks to our
service oriented approach, both mechanism can be easily
swapped without adjusting any code nor configuration pa-
rameters.

For effective and fast gesture recognition, we ex-
tended the well established libstroke 2D recognition tech-
nique [10] to work as a 3D gesture recognizer (see figure 4).
LibStroke takes a stroke (set of captured positions) and
converts it into a command by generating signatures. The
algorithm creates a bounding box around the stroke and di-
vides it into a 3x3 grid where each sub area is uniquely
identified (1 to 9). Then, each element of the stroke is vis-
ited to find out the subarea of the matrix where it belongs.
Identifications of each visited subarea are concatenated to
create the signature of the stroke. The signature can then
be compared to a vocabulary that binds commands to sig-
natures. Since we are using 3D gesture capture techniques,
we extended the libstroke technique to work in 3D. Instead
of using a 3x3 matrix, we work with a 3x3x3 matrix con-
sisting of 27 sub areas.



(signature)

a b

ed

g i

c

f

h

a b

ed

g i

c

f

h

j k l

o

r

s t u

x

@

adghi

gdaistu

2D gesture

3D gesture

(signature)

Figure 4. Fast 3D gesture recognition

4.4 Speech and sounds

Speech recognition and speech synthesis are based on the
Microsoft speech SDK. In the context of the operating
room, speech synthesis is not well accepted by surgeons.
They would rather opt for a collection of beeps or short
sounds to inform them about the status of the interface. For
instance, when the system is ready for speech or gesture
recognition, it emits a short sound inviting the user to speak
or start a hand gesture.

5 CONCLUSION

In this paper we present an innovative architecture to de-
velop intelligent assistants. The Active framework pro-
vides a unified tool and approach for rapidly developing
applications incorporating language interpretation, dialog
management, multimodal fusion and brokering of web ser-
vices. As such, Active aims to unleash the potential of in-
telligent software by making required technologies more
easily accessible. This paper shows how an Active based
assistant for the operating room has been designed and suc-
cessfully implemented. The current system is under review
and evaluation by surgeons.

More work remains to be done on applications, im-
plementation and methodology aspects of Active. First, on
the application side, to perform realistic clinical tests of the
surgery assistant, we are working on integrating real op-
erating room components with the Active framework. In
a different domain, Active is used as the back bone of a
mobile assistant application that helps mobile users access
data and services through a natural email based dialog. The
Active framework is used in both fields, helping us improve
and verify the agility and robustness of our approach. On
the implementation side, we are working on scalability and
robustness of the Active Server. We are planning on build-
ing clusters of Active Servers, able to balance large work-
loads to host multiple personal assistants serving a large

number of users. Finally, we are exploring innovative AI
techniques for activity representation and recognition. Our
goal is to unify plan execution and activity recognition, so
that an Active powered assistant could look at the activities
of a user, understand what is being attempted to proactively
provide relevant assistance and even take over the execu-
tion of the task.

6 ACKNOWLEDGMENTS

This research is supported by SRI International and the
NCCR Co-Me of the Swiss National Science Foundation.

References

[1] Maes, P.: Agents that reduce work and information
overload. In: Communications of the ACM. Vol-
ume 38. (1995)

[2] Winikoff, M., Padgham, L., Harland, J.: Simplifying
the development of intelligent agents. In: Australian
Joint Conference on Artificial Intelligence. (2001)
557–568

[3] Cheyer, A., Martin, D.: The open agent architecture.
Journal of Autonomous Agents and Multi-Agent Sys-
tems 4(1) (2001) 143–148 OAA.

[4] Gerd, D.S.: (Multiplatform testbed: An integration
platform for multimodal)

[5] Berry, P., Myers, K., Uribe, T., Yorke-Smith, N.:
Constraint solving experience with the calo project.
In: Proceedings of CP05 Workshop on Constraint
Solving under Change and Uncertainty, Sitges, Spain
(2005) 4–8

[6] Modi, P., Veloso, M., Smith, S., Oh, J.: Cmradar:
A personal assistant agent for calendar management
(2004)

[7] Sycara, K., Paolucci, M., van Velsen, M., Giampapa,
J.: The RETSINA MAS infrastructure. Technical Re-
port CMU-RI-TR-01-05, Robotics Institute Technical
Report, Carnegie Mellon (2001)

[8] Graetzel, C., Fong, T., Grange, S., Baur, C.: A
Non-Contact Mouse for Surgeon-Computer Interac-
tion. Technology and Health Care 12(3) (2004)

[9] Marti, G., Bettschart, V., Billiard, J., Baur, C.: Hy-
brid method for both calibration and registration of an
endoscope with an active optical tracker. CARS 2004
10(4) (2004) 159–164

[10] Willey, M.: Design and implementation of
a stroke interface library. (Technical report)
http://www.etla.net/libstroke/.


