
Development Tools for the Open Agent Architecture�David L. Martin, Adam CheyerSRI InternationalGowang-Lo LeeETRIAbstractThe agent-based paradigm for software systems cannot realize its full potential, and will notbecome widespread, until adequate agent development tools and environments are available. Toaddress this need, an exploration of the requirements for such tools and environments has beenconducted in the context of the Open Agent Architecture (OAA) project, and has resulted in thecreation of the Agent Development Toolkit (ADT). The ADT provides a variety of mechanismsthat support the speci�cation and implementation of individual agents, as well as cooperatingcommunities of agents. Special attention has been given to tools that enable an agent developerto construct intelligent user interfaces, which allow users to express their requests of agents usingspoken and written natural language in combination with other modalities. This paper discussesa number of general requirements that were identi�ed for agent development environments,reports on the design and functionality of the ADT, and shows how the ADT addresses thoserequirements. In addition, we describe our experience to date in constructing OAA-based agentsystems, and future directions in extending the ADT.

�This paper was supported by a contract from the Electronics and Telecommunications Research Institute (Korea),and will be presented at The Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM 96),London, April 1996. The �rst author can be reached by email at martin@ai.sri.com.1

1 IntroductionA number of important and interesting investigations have recently been made into the languages,architectures, algorithms, and formal analyses of agent-based systems, and substantial agent-basedsystems are being �elded in a variety of domains. There are good reasons for this. The notion ofautonomous, cooperative, and intelligent agents as fundamental system building blocks provides anevocative metaphor and a natural paradigm for harnessing explosive increases in interconnectivityand information access. From a system developer's perspective, this paradigm holds the promise ofconstructing
exible, adaptable systems that provide intelligent services based on the cooperativee�orts of the most capable and most appropriate agents for the job at hand, selected from apotentially vast array of distributed software and hardware resources. 1While the results of these investigations provide many valuable elements of infrastructure for agent-based systems, it must be recognized that the agent-based approach cannot realize its full potential,and will not become widespread, until adequate agent development tools and environments areavailable. To date, very little has been done to address this need.There are a number of interesting questions to be addressed: What new requirements and chal-lenges arise for development tools that are unique to agent-based systems? How does the inherentautonomy and loose coupling of agents a�ect the development process and the resulting artifactssuch as documentation? How can we best facilitate the construction of a collection of interoperableagents written in various languages and operating on various platforms, and agents derived fromexisting applications and legacy information sources? How much of the creation of an agent-basedsystem can be automated?An agent system that provides an intelligent user interface | allowing users to express their requestsby using spoken and written natural language in combination with other modalities | raisesadditional challenges regarding development environments. For example, one important questionis how best to provide support for the agent developer, who is not likely to be a computationallinguist, in tailoring the linguistic processing components of the system to handle the domain-speci�c expressions that may be expected to appear in users' requests. 2An exploration of these questions has been conducted in the context of the Open Agent Architec-ture (OAA) project, and has resulted in the creation of the Agent Development Toolkit (ADT). Thispaper is concerned with the requirements that motivated the creation of the ADT, and the function-ality that evolved to meet those requirements. The following section presents a general discussionof requirements that are characteristic of development environments for agent-based systems. InSection 3 we give an overview of the OAA, and of results to date in constructing OAA-based agentsystems. Section 4 shows in some detail how many of the requirements mentioned earlier have beenaddressed by the ADT. Finally, in Section 5, we draw conclusions and mention some current andproposed work to extend the OAA and the ADT.1Because of the wide variety of systems to which the word `agent' has been applied recently, it may be helpful toindicate what we mean by `agent-based system'. The type of system we have in mind is one in which the servicesprovided are accomplished through the cooperative e�orts of a number of independent software processes, each ofwhich is persistent and acts with a high degree of autonomy.2Most other important areas of exploration in agent-based systems | learning, mobility, negotiation, and so forth| also introduce new challenges for development environments.
2

2 Challenges for Agent Development EnvironmentsIn highlighting some of the general requirements and challenges that can be identi�ed for develop-ment environments for agent-based systems, we are not attempting to give an exhaustive list. Wedo believe that the points mentioned here are applicable to most agent-based systems. In describ-ing the Open Agent Architecture in Section 3, we will be able to show in greater detail how theserequirements arise in that particular context, and in Section 4 we show how they are addressed bythe ADT.2.1 Supporting ConformanceBecause of the emphasis on interoperability inherent in agent-based systems, there is a criticalneed for each agent to be designed so as to interact correctly (that is, in accordance with protocol)with the other agents in the system. Thus, an agent development environment should guide thedeveloper in adhering to the protocols used by the system.Some form of this requirement has existed in all software development paradigms; after all, evenin the simplest programs, procedure calls must match the appropriate procedure declarations.However, the need for conformance is likely to be more strenuous in agent-based systems, in tworespects. First, agent programming interfaces and interactions between agents | and hence, theprotocols for specifying these | tend to be more complex than interfaces and interactions betweenthe elements of systems built using traditional approaches. Second, it is a goal of most agentsystems that the development teams of the various agents be able to work independently, remotely,and on widely heterogeneous platforms | but while incurring as little overhead as possible due tothe interdependencies of agents.This requirement of conformance applies as strongly to agent documentation as it does to agentcoding. In particular, the ongoing evolution of an agent-based system by widely distributed and in-dependent groups of developers will require documentation of available agents and their capabilitiesin a consistent, automatically searchable format.2.2 Supporting HeterogeneityIn agent development, as in most software development, conformance and heterogeneity are twosides of the same coin: it is precisely because of the need to achieve a meaningful level of interop-erability between widely heterogeneous agents that it is critical for agents to conform to the sameprotocols.Many di�erent types of heterogeneity can occur in an agent-based system. Three that are ofconcern from the agent developer's point of view are the multiplicity of implementation languages,the multiplicity of execution platforms, and the mixture of newly created agents with those thathave been adapted from legacy applications or information sources.Thus, the design of an agent development environment (as well as the design of the architecture)should allow for an equal level of support for an agent's development, regardless of its language,platform, or origin. 3

2.3 Construction of Agent CommunitiesAn agent-based approach encompasses a new de�nition of \system" (or at least a de�nition modi�edin some important ways), and consequently calls for new conceptualizations of what it is to createa \system". Agent-based system construction involves the identi�cation of a set of agents that cando a job together. Wherever possible, parts of a system's functionality are provided by reuse ofexisting agents, but in any case the determination of what services are provided by existing agentsis an essential prerequisite to the design of new agents. Thus, a development environment shouldmake it as easy as possible to manipulate (e.g., locate, browse, inspect, visualize) agents as the basicbuilding blocks of systems. In particular, it should provide support for identifying the capabilitiesof existing agents. It should also provide support for specifying new con�gurations of agents forinteroperation.2.4 Running and Debugging SystemsAgent-based approaches also entail changes in what is meant by \system execution". Invoking |and monitoring | an agent-based system can become much more involved than it is under today'spredominant software paradigms. Rather than focusing on the behavior of a single process, ora tightly regimented series of client-server interactions, the agent-based system developer needsto be able to initiate and ensure the continued availability of an entire collection of processesrunning in diverse environments. He must be able to view the global activity of the collection,as well as the local activities of speci�c agents. These needs call for more powerful executionand debugging aids than currently exist. Thus, an agent-based development environment shouldprovide new mechanisms for instantiating, monitoring, and debugging operational con�gurationsof agents. Agent-based debugging aids will most likely be constructed on models borrowed fromthe �eld of simulation.2.5 Facilitating Use of Support AgentsIn our terminology, a support agent is one that provides services of great importance to many,if not most, agents operating in a system. Thus, while not a �xed part of the agent systeminfrastructure, a support agent is thought of as having a more fundamental status than an ordinaryapplication agent, because of the widespread demand for its use. Because of the emphasis in theOAA on intelligent user interfaces, speech recognition and natural language understanding agentshave become two very important examples of support agents in the OAA.Support agents pose special problems for agent development tasks because in many cases theyemploy sophisticated techniques. As a result, customizing a support agent for a particular taskdomain is likely to require substantial expertise | a level of expertise that the average agentdeveloper may not possess and may not have the time to acquire.Because of their quasi-standardized use with the system, however, support agents o�er an oppor-tunity to provide knowledge-acquisition tools that support their use. For example, as we showin Section 4.2, the use of speech recognition and natural language understanding agents can besupported with tools for the introduction of natural language vocabulary and concepts relevant toeach agent that employs their services. 4

3 The Open Agent ArchitectureThe Open Agent Architecture provides a framework for integrating a society of software agents,each possessing a high degree of independence and autonomy, within a distributed environment.A collection of agents satsi�es requests from users, or other agents, by acting cooperatively, underthe direction of one or more facilitators (which are themselves agents of a special type).The system's architecture, based loosely on Schwartz's FLiPSiDE system [7], uses a hierarchicalcon�guration in which each application agent connects as a client of a facilitator. Facilitatorsprovide content-based message routing, global data management, and process coordination for theirset of connected agents. Facilitators can, in turn, be connected as clients of other facilitators. Eachfacilitator records the published capabilities of their subagents, and when requests arrive (expressedin the Interagent Communication Language, described below), the facilitator is responsible forbreaking them down and for distributing subrequests to the appropriate agents. An agent satisfyinga request may require supporting information, and the OAA provides numerous means of requestingdata from other agents or from the user.Agents share a common communication language and a number of basic structural characteristicsand capabilities. An agent library provides this common functionality. For example, every agentcan install local or remote triggers on data, events or messages; manipulate global data stored byfacilitators; and request solutions for a set of goals, to be satis�ed under a variety of di�erent controlstrategies. In addition, the agent library provides functionality for parsing and translating expres-sions in the Interagent Communication Language, and for managing network communication usingTCP/IP. Agents may be implemented (or derived from existing applications) in any programminglanguage to which the agent library has been ported, and may run on any network-linked platform.The OAA has been described in greater detail in [4].3.1 The Interagent Communication LanguageThe OAA's Interagent Communication Language (ICL) is the interface language shared by all agents,no matter what machine they are running on or what computer language they are programmed in.The ICL has been designed as an extension of the Prolog programming language, in order to takeadvantage of the power of uni�cation and backtracking during interactions among agents.Every agent participating in an OAA-based system de�nes and publishes a set of capabilities speci-�cations, expressed in the ICL, describing the services that it provides. These establish a high-levelinterface to the agent, which is used by a facilitator in communicating with the agent, and, mostimportant, in delegating service requests (or parts of requests) to the agent. Partly due to our useof Prolog as the basis of the ICL, we refer to these capabilities speci�cations as solvables.For example, in creating an agent for a mail system, solvables might be de�ned for sending amessage to a person, testing whether a message about a particular subject has arrived in the mailqueue, or displaying a particular message onscreen. For a database wrapper agent, one might de�nea distinct solvable corresponding to each of the relations present in the database.
5

3.2 StartItAs mentioned in Section 2.4, agent-based architectures introduce strenuous requirements for in-voking and monitoring systems of agents. StartIt addresses these requirements, and provides animportant bridge between the functionality of the ADT and that of the OAA.Once a collection of interoperable agents has been assembled to work on a set of tasks, StartItprovides the means of invoking each of the agents on the correct platform, according to the systemprotocols of that platform, and ensuring that the agent makes the required connection to an OAAfacilitator. Of equal importance, StartIt monitors the status of each agent to see that it continuesto function correctly. In the event that StartIt detects a failure of one of the agents, it is able totake steps to recover from the failure and automatically restart the agent.Startup speci�cations for each agent and instructions on how to deal with failures are contained incon�guration �les which, as described below, can be automatically generated by a component ofthe ADT.3.3 OAA-Based Prototype and Fielded SystemsThe OAA has been used as the framework for a number of applications in several domain areas.The �rst OAA-based system was a multifunctional \o�ce assistant", in which fourteen autonomousagents provide monitoring, communication and management capabilities for business applicationssuch as online calendars, electronic mail, or databases [4]. In a typical scenario, agents with expertisein email processing, text-to-speech translation, noti�cation planning, calendar and database accessand telephone control cooperate to �nd a user and alert him or her of some important message.The OAA has also been used to construct
exible and natural user interfaces to agent-based andconventional applications. In the CommandTalk system, currently installed at the Marine CorpsAir Ground Combat Center at Twentynine Palms, CA, a collection of OAA-enabled agents providea spoken-English interface to a map-based simulation of armed forces. Another OAA-based mul-timodal user interface project focuses on techniques for merging simultaneous streams of pen andvoice input to form multimedia queries about data retrieved from commercial Internet web sites[2].4 The Agent Development ToolkitThe Agent Development Toolkit, or ADT, is built around three loosely coupled core components,and presents itself via a user interface component.� The Programmer's Agent Construction Tool (ProACT) is used by an agent designer to de�neand maintain the capabilities and other properties of an agent, to manage documentation forthe agent, and to generate a code template for the agent.� The Linguistic Expertise Acquisition Program (LEAP) facilitates the task of interfacing anew agent with existing linguistic support agents such as natural language parsers and speechrecognition systems. This involves obtaining semantic information about the domain in whichthe agent operates, the services provided by the agent, and the English words that will be6

useful in composing requests for these services. To make these words useful to the system,LEAP extracts from the agent developer information about their linguistic attributes; it doesso by asking the developer simple questions about how and when those words are used.Once the linguistic knowledge has been acquired, LEAP generates or updates the appropriateknowledge bases needed by the linguistic support agents.� PROJECT allows the developer to create and maintain repositories of reusable agents, andto choose from available repositories to produce an operable con�guration of agents for aparticular application domain. Once the con�guration has been selected, PROJECT canproduce a con�guration �le for use by StartIt, the OAA's system execution manager.� The user interface component provides integrated access to the features of all three corecomponents. It provides editing capabilities for the artifacts of each core component, suchas agent speci�cations, iconic representations of agents, source code, domain classes andvocabulary, agent repositories, and project con�gurations.The ADT has itself been constructed within the OAA. That is, each of the three core components,as well as the user interface, is instantiated as one or more OAA agents. Thus, in constructing theADT, we were able to take advantage of the bene�ts of the agent-based paradigm. For example, wewere readily able to use a mixture of languages and platforms (some under UNIX 3 and some underMicrosoft Windows) in implementating the components. In particular, the user interface bene�tedfrom the use of rapid development user interface tools available under Microsoft Windows, andLEAP bene�ted from being implemented under UNIX, where we were able to make good use of ourProlog development environment and some existing source code from related projects. Further, theuse of the OAA ensures future extensibility via the addition of new agents.In the following discussions of the three core components, the use and appearance of the userinterface component is not covered in detail, but parts of it are mentioned in the core componentdescriptions, and parts are shown in the accompanying �gures.4.1 ProACT: De�ning and Constructing AgentsProACT guides an agent developer through the various phases of agent creation and maintenance.An agent developer starts creating a new agent by de�ning, in ProACT, its name, author, title,version number, and icon. To inspect or modify an existing agent, the agent can be opened usingeither of two familiar techiques: the existing agent's speci�cation �le can be selected from a �lenavigation dialog, or its icon can be selected from those in the currently selected agent repository.(Agent repositories are selectable using PROJECT.)The agent programmer can then use ProACT to enumerate the agent's capabilities in terms of theInteragent Communication Language. The ICL editing window provides an opportunity to ensureconformance to protocol, by performing syntax checks and prompting the developer for missingsyntactic elements. 4Once the capabilities of the agent have been speci�ed, ProACT encourages the agent programmer toprovide documentation for the agent, in a standardized format. Information may be entered using3All product names mentioned in this document are the trademarks of their respective holders.4As of this writing, these syntax checks are under development.7

built-in documentation editors, which provide templates for describing the agent itself, and each ofthe agent's capabilities speci�cations. After documentation has been edited, ProACT automaticallygenerates HTML representations of the information that can be published on the World Wide Web,and thus can be made readily available to other agent developers collaborating on the project, orthose who may add agents to the project at some future time.The use of HTML as a documentation medium is motivated by the requirement, discussed earlier,to support widely distributed teams of agent developers with up-to-date speci�cations that canautomatically be searched for reusable agents providing some needed service. Publishing docu-mentation in HTML allows developers to employ any of a wide variety of available Web tools.For example, ProACT interfaces with Harvest [1], an Internet tool for indexing and searching Webpages. In the Harvest framework, brokers and gatherers can be set up to collect all published OAAdocumentation from anywhere in the world, or from selected subgroups of agent development sites| thus providing an e�cient query mechanism to search for appropriate agents for reuse.ProACT supports heterogeneity by generating code templates for agents in several programminglanguages, currently Prolog, C, C with X Windows, and Visual Basic. Delphi and Lisp will beadded soon, as libraries in these languages have recently been added to the OAA. Code templategeneration is a useful function for the novice programmer, who may not know all the intricacies ofbuilding a new agent, as well as being a timesaver for the expert user. Code template generationis also convenient when an existing agent is ported to another programming language.A ProACT screen is shown in Figure 1. In this �gure, code template generation, in C, has just beencompleted for a new agent.4.2 LEAP: Adding Speech and Natural Language Understanding to AgentsAgents provide functionality that can be accessed by other agents, by the user through a graphicaluser interface, or sometimes by the user through a natural language (spoken or written) interface.As mentioned in Section 2.5, speech recognition and natural language processing capabilities aremade available to all agents in the OAA by specialized support agents.To provide a natural language interface to an agent, the agent designer must generate linguisticknowledge bases for the Natural Language and Speech Recognition agents, which enables theseagents to handle spoken and written requests that are appropriate for the agent. LEAP is a tool forguiding the user through this process, and is primarily concerned with the requirements expressedin Sections 2.1 and 2.5.It is important to realize that the roles of the Speech Recognition and Natural Language agentscan be played by di�erent agents in di�erent OAA con�gurations (indeed, it is possible to haveseveral di�erent Speech Recognition and/or Natural Language agents operating within a singlecon�guration). These Speech Recognition and Natural Language agents can be of varying lev-els of sophistication, and in some con�gurations, there are advantages to using relatively simpleapproaches (for example, some con�gurations have employed Natural Language agents based onProlog De�nite Clause Grammars). However, in most settings, one wants to use the most powerful,
exible approaches available, and thus our e�orts have been focused on the use of two very sophis-ticated systems developed at SRI: the Decipher [3] speech recognition system, and the Gemini [5]natural language understanding system, both of which have been used as agents in a number ofOAA-based systems. Consequently, the requirements for LEAP have largely been driven by these8

Figure 1: Using ProACT to generate source code for an agent.

9

two systems.Although the Speech Recognition and Natural Language agents provide considerable
exibilityin specifying knowledge for new domains, they were written by and for computational linguists.Consequently, extending the domain knowledge and linguistic knowledge of these support agents(as is true of most powerful speech recognition and natural language systems) has heretofore beena complex task requiring expertise in computational linguistics. This has been an acceptablerequirement in their original context of use. However, their use within the OAA creates a newcontext, characterized by the following conditions:� New and widely varying domains are added frequently.� As agents are introduced and developed in a domain, the knowledge needed by the SpeechRecognition and Natural Language agents changes rapidly and may continue to evolve overa long period. This change involves knowledge of linguistic usage as well as knowledge of thesolvables (agent capabilities descriptions) currently made available in the domain.� Agent developers, rather than linguists, will introduce new domain knowledge to the SpeechRecognition and Natural Language agents.LEAP's goal, then, is to assist the nonlinguist in introducing new domain and linguistic knowledgeto Speech Recognition and Natural Language agents.4.2.1 LEAP's Subcomponents and General ApproachLEAP's mission involves acquiring four types of knowledge: domain knowledge, as captured in aclass hierarchy; knowledge of the solvables provided by the agents being used in an OAA-basedsystem; some types of linguistic information (morphological, syntactic, and semantic) about thevocabulary that may be used in formulating requests of the agents; and phonetic (pronunciation)information about this vocabulary.The �rst three of these knowledge types provide the critical connections that the Natural Languageagent will need (at execution time, not at agent development time) to transform an English requestinto a formal goal that may be handled by an OAA facilitator. This goal, an expression in a �rst-order logical notation, contains solvables as subgoals. The facilitator, in satisfying the goal, willdispatch each solvable to an agent that can handle it. The fourth type of information will be used(also at execution time) by the Speech Recognition agent in recognizing spoken requests.LEAP has a subcomponent corresponding to each of these four types of knowledge; these subcompo-nents are the Class Hierarchy Editor, the ICL-NL Linker 5, the WordWizard, and the PronunciationWizard.The sequence of events for telling LEAP about a new agent is as follows: First, using the ClassHierarchy Editor, inspect and edit the class hierarchy to ensure that the types of objects the agentdeals with are represented in the hierarchy. Then, using the ICL-NL Linker, provide semanticinformation about the agent's solvables (these have already been entered, using ProACT). Next,using the Word Wizard, enter words that are expected to be contained in users' requests for the5Interagent Communication Language | Natural Language Linker10

agent. Finally, for any words for which the Pronunciation Wizard doesn't already have a phoneticdescription, use the Pronunciation Wizard to select and/or edit one.In our presentation, here, of the �rst three subcomponents of LEAP, we are primarily concerned withoperations that help to satisfy the knowledge base requirements of the Natural Language agent.This is because its knowledge base is considerably more complex than that required by the SpeechRecognition agent. Indeed, most of the information required by the Speech Recognition agent canbe viewed as a subset of that needed by the Natural Language agent. One notable exception tothis, however, is the information gathered by the fourth subcomponent, the Pronunciation Wizard.4.2.2 LEAP's Class Hierarchy EditorNearly all rules in the knowledge base of the Natural Language agent refer to the classes de�ned inthe class hierarchy. The class hierarchy is a tree that contains what the Natural Language agentrecognizes as the primitive conceptual categories to which entities may belong, and expresses thesuperclass and subclass relationships that hold between them. Higher levels of the hierarchy containthe more domain-independent classes, whereas lower levels tend to be more domain-speci�c. Forexample, the class agent| a class likely to be near the root of the hierarchy |might have subclasseshuman-agent and software-agent, both of which are considered to be domain-independent.When a new domain (such as the corporate personnel domain) is introduced to the Natural Lan-guage agent, it is usually necessary to add new classes re
ecting the distinctions made in thatdomain. For example, the human-agent class might have a domain-speci�c subclass employee thatis broken into subclasses manager, salesperson, researcher, and programmer | re
ecting the per-sonnel structure of a particular organization. (These are some of the classes used in our o�ceassistant domain.)Because the class hierarchy is so central to the expression of the rules used by the Natural Languageagent, it must be easy to understand and to edit. Thus, we have provided a Class Hierarchy Editorfor browsing and modi�cation of this hierarchy. This editor also allows drag-and-drop techniquesto be used in selecting classes during operation of both the ICL-NL linker and the Word Wizard,as described later.4.2.3 LEAP's ICL-NL LinkerThe ICL-NL Linker acquires the knowledge needed by the Natural Language agent so that it caninclude a new solvable (capability speci�cation) in the formal representations that it generates fromEnglish requests.Two main types of information are requested from the user. First, the user is asked to providean overall characterization of the solvable as an Entity, Relationship, or Attribute. This meansof characterizing solvables was selected because, as a standard part of database methodology, it islikely to be familiar to most developers, and also because the characterization can be used to guidethe selection of rules that the Natural Language agent can use in generating appropriate calls tothe solvable.Second, the user is asked to annotate each solvable with information from the class hierarchy; thisis done by associating a class with the functor and with each argument of each solvable. Thisoperation is facilitated by the ability to drag and drop class names between the Class Hierarchy11

Editor and the ICL-NL Linker. Figure 2 shows the main window of the ICL-NL Linker being usedin this way. In this example, the developer, who is characterizing the arguments of the solvablesprovided by an email agent, has just associated the �rst argument of the solvable forward(Msg,Destination) with the domain-speci�c class message.In addition, the ICL-NL Linker provides several other utilities that are helpful in introducing newsolvables to the Natural Language agent. For example, if a solvable represents a database relation,and thus can be queried for all the tuples in the relation, the ICL-NL Linker can be used to performthese queries and automatically create vocabulary entries corresponding to speci�c values of therelation's �elds.

Figure 2: Using LEAP to link ontological classes to an agent speci�cation.Before moving on to LEAP's most linguistically specialized component, it is worth noting thatthe functionality of its Class Editor and ICL-NL Linker can be viewed in a nonlinguistic context,that is, as a means of developing domain-speci�c ontologies, and giving characterizations of agents'capabilities in terms of these ontologies. These characterizations are general enough to be of useto more sophisticated facilitators and information brokers, which are currently under developmentfor use with the OAA.4.2.4 LEAP's Word WizardLEAP's Word Wizard acquires the knowledge needed by the Natural Language agent to understand12

sentences containing a particular word or phrase.The Word Wizard's chief method of acquiring information from the user is exemplar-based; thatis, it asks the user questions about the correctness of speci�c phrases or sentences, and draws theappropriate conclusions based on the responses. This approach is based on previous work done atSRI on the TEAM project [6].The Wizard operates by obtaining a categorization of a new word, and by gradually re�ning thecategorization through a series of questions. Each re�nement of category, in turn, determines thesubsequent questions to be asked. Each question asked is used to (1) re�ne the categorization ofthe word (roughly, by identifying the important patterns it can be used in), (2) obtain some speci�cdata needed about the word (such as the plural form of a noun), or (3) both of these operations.The questions are simple ones that do not require any expert knowledge about natural languageprocessing.For example, in constructing an agent that extracts information from a personnel database, thedeveloper might want the agent to be able to answer questions containing the verb `occupy', as in\Who occupies o�ce number EJ219?". After entering `occupy' as a new verb, the developer would�rst be asked to identify one or more acceptable patterns of usage, from a list of available verbusage patterns. Assuming that he selects the pattern \A(n) occupies a(n) ", he wouldthen be asked to �ll in the classes, from the class hierarchy, of the things that can be referred to inthe blanked positions. (In this case, he might �ll in the classes `employee' and `o�ce'.) Followingthis, LEAP would ask questions about the acceptability of di�erent uses of `occupy'. For instance,the developer would be asked to say whether the following construction sounds OK: \An o�ce isoccupied by an employee". From the answer, LEAP would know whether `occupy' can be used inthe passive form, and could use this information in generating the appropriate lexical entry for`occupy', to be used by the Natural Language agent.Once the �nal categorization for a new word is determined, the Wizard has all the information itneeds to update the Natural Language agent's knowledge base. The information gathered by theWizard for a new word, along with related information entered previously using the Class HierarchyEditor and the ICL-NL Linker, typically results in a large number of changes (perhaps 10 to 25detailed updates) to the knowledge base. These updates are transparent to the user, who sees onlythe command structure provided by the user interface and the commonsense questions that havebeen presented.4.2.5 LEAP's Pronunciation WizardMuch of the knowledge needed by the Speech Recognition agent (such as a word's part of speech)can be derived from the information acquired for the Natural Language agent. One type of lin-guistic knowledge that is used exclusively by the Speech Recognition agent is a word's phoneticspeci�cation, the description of how it is pronounced. Even though the Speech Recognition agentincorporates a large corpus of phonetic information for ordinary words, the vocabulary used byan agent can include domain-speci�c terminology, names, abbreviations, and acronyms, and thusit is frequently the case that additional phonetic speci�cations are needed. As a simple example,our o�ce assistant agent system might be expected to answer the spoken question \What is theextension of Adam Cheyer", or to satisfy the request \Send a message to cheyer@ai.sri.com".Since the Speech Recognition agent needs to have a phonetic speci�cation for each new word in-troduced to it, and since these speci�cations employ a fairly specialized notation, LEAP includes13

a Pronunciation Wizard to help the agent developer in entering these speci�cations. The Pronun-ciation Wizard operates in the background, checking each new word to see if its pronunciation isalready known. When a word without a known pronunciation is encountered, it is placed on anaction list, until the developer is ready to work on pronunciations. At that time, he can select aword from the action list, and the Pronunciation Wizard uses a sophisticated algorithm to generatea list of plausible phonetic speci�cations for the word. The developer is asked to select one of these,and also has the option to edit it. To assist in this task, the user can ask to see a phonetic speci�-cation for any other word known to the system. For instance, in selecting a phonetic speci�cationfor the name \Cheyer", it might be helpful to have a look at the speci�cation for the rhyming word\buyer".One other way in which the Pronunciation Wizard can be helpful, but which has not yet beenimplemented, is that a selected phonetic speci�cation could be submitted to the OAA's text-to-speech support agent for audio playback.4.3 PROJECT: Con�guring Communities of AgentsThe PROJECT tool, which addresses many of the requirements expressed in Section 2.3, is usedto de�ne particular con�gurations of agents for a given application domain. Using PROJECT,a programmer can graphically construct an agent project by adding members to a conferencetable, selecting participants from repositories of available agents, and then tailoring agent executionparameters to the task at hand. These execution parameters include such things as what speci�cmachine to execute an agent on, what facilitator the agent should connect to, and what steps totake if the agent unexpectedly crashes. Once a con�guration has been speci�ed, the PROJECT toolcan generate data �les for use by StartIt (Section 3.2).In Figure 3, PROJECT's main screen is shown, with construction of a project con�guration inprogress.5 Conclusions and Future DirectionsThe main theme of this paper has been that agent-based software paradigms introduce challeng-ing new requirements for development environments, which will need to be addressed before theseparadigms are able to realize their full promise. We began by identifying some important generalrequirements for agent development environments which are relevant to most, if not all, agent-based systems. We have outlined the architecture and functionality of one particular agent-basedparadigm, the Open Agent Architecture (OAA), in order to illustrate how these general require-ments arise in that context. In our presentation of the Agent Development Toolkit | a prototypedevelopment environment for OAA-based systems, which itself consists of a collection of OAA agents| we have shown how many of these requirements have been addressed.In building the ADT, our initial focus has been on capabilities that provide the greatest gains inproductivity, and that are readily accessible to novice agent developers. We recognize that thereare many possibilities for additional functionality that can be introduced into the ADT framework,and consequently we have designed the ADT for extensibility.We have not yet taken full advantage of the fact that the ADT is itself implemented within the OAA.14

Figure 3: Using PROJECT to de�ne an operable con�guration of agents.

15

Thus the Natural Language and Speech Recognition agents could be used to provide a multimodalinterface for the ADT, just as they have for some of our application domains. More importantly,implementation within the OAA means that the results of many development decisions can betested immediately and demonstrated to the developer within their context of use. For example,when introducing new vocabulary for an agent using LEAP, it should be possible to immediatelytry out a sentence containing that vocabulary and observe, �rst, whether the Natural Languageagent produces the correct formal representations, and second, whether these representations resultin the desired set of agent interactions.One important area that has not been addressed is debugging tools. Because of the complexityassociated with interactions of multiple autonomous agents and the overhead associated with de-ployment on distributed sites, the ability to simulate a community of agents will have great value.We see this ability as something that will be tightly integrated with the execution environment(which again, will be facilitated by the implementation of the ADT within the OAA). For any se-lected con�guration of agents, it should be possible to initiate a simulated set of interactions withoutrequiring any additional setup e�ort. The simulation will allow for global and local views of agentactivities, with the ability to inspect data, trace, set breakpoints, and step through execution.Finally, there is important work to be done in reasoning about agent capabilities speci�cations. Sofar we have only made use of each agent's speci�cation of the services it provides, but it is interestingto consider what could be done if additional information were provided by each agent as to whatservices it uses. We would like to explore to what extent, given these additional speci�cations, thedevelopment environment can automatically determine whether a given con�guration of agents cansupply a given set of services, and if not, �nd and select existing reusable agents that supply themissing capabilities.References[1] Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and Michael F. Schwartz. TheHarvest information discovery and access system. In Proceedings of the Second InternationalWorld Wide Web Conference, pages 763{771, Chicago, Illinois, October 1994.[2] A. Cheyer and L. Julia. Multimodal maps: An agent-based approach. In Proceedings of theInternational Conference on Cooperative Multimodal Communication, Eindhoven, The Nether-lands, May 1995.[3] Michael Cohen, Ze'ev Rivlin, and Harry Bratt. Speech recognition in the ATIS domain usingmultiple knowledge sources. In Proceedings of the ARPA Spoken Language Systems TechnologyWorkshop, Austin, Texas, January 1995.[4] P. R. Cohen, A. Cheyer, M. Wang, and S. C. Baeg. An open agent architecture. In O. Et-zioni, editor, Proceedings of the AAAI Spring Symposium Series on Software Agents, pages 1{8,Stanford, California, March 1994. American Association for Arti�cial Intelligence.[5] J. Dowding, J. M. Gawron, D. Appelt, J. Bear, L. Cherny, R. Moore, and D. Moran. Gemini: Anatural language system for spoken-language understanding. In Proceedings of the 31st AnnualMeeting of the Association for Computational Linguistics, pages 54{61, Columbus, Ohio, June1993. 16

[6] Barbara J. Grosz, Douglas E. Appelt, Paul Martin, and Fernando Pereira. TEAM: An experi-ment in the design of transportable natural-language interfaces. Technical Note 356R, Arti�cialIntelligence Center, SRI International, Menlo Park, California, 1987.[7] D. G. Schwartz. Cooperating heterogeneous systems: A blackboard-based meta approach. Tech-nical Report 93-112, Center for Automation and Intelligent Systems Research, Case WesternReserve University, Cleveland, Ohio, April 1993. Unpublished Ph.D. thesis.

17

